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Abstract

The Self-Explainable Artificial Intelligence (S-xAl) for Earth Observation (EO) project AETHER
develops and demonstrates a transparent EO-Al modelling approach that unites deep learning
with explainable reasoning and knowledge grounding. Its architecture integrates spatiotemporal
EO embeddings, semantically grounded concept base representations, and retrieval-augmented
generation modules to translate satellite data into physically meaningful variables and
stakeholder-oriented explanations. Concept annotations are automatically derived from
auxiliary spatial data via rule-based templates, enabling large-scale, weakly supervised training
while preserving scientific traceability.

AETHER will design, implement, and evaluate a proof-of-concept system across three use cases:
(i) detection of urban heat islands and their evolution due to global warming, (ii) crop yield
prediction and rapid assessment of the effect of floods, droughts, and fires, and (iii) mapping of
biodiversity and its loss due to climate change. The three use cases will share a common
embedding backbone and explainability framework for consistency and reusability. The system
will produce self-interpretable concept layers, accurate predictions, and text-based
explanations grounded in both scientific evidence and stakeholder knowledge.

The proof-of-concept will span two or three of the use cases and willemploy 10-30 representative
concepts per use case, requiring under ten GPU-weeks for training and less than one terabyte of
storage. The results will showcase a scalable, efficient, and trustworthy S-xAl framework that
bridges EO observation, concept-based interpretation, and human-centric explanation,
advancing transparency, reproducibility, and reliability in EO-Al applications for environmental
science and decision support.
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Definitions
The following definitions, many like those of the SoW, are used in the context of this RB report:

Artificial Intelligence (Al). The Oxford Dictionary defines Artificial Intelligence as the theory and
development of computer systems able to perform tasks normally requiring human intelligence,
such as visual perception, speech recognition, decision-making, and translation between
languages. Artificial Intelligence is a branch of computer engineering, designed to create
machines that behave like humans. More generically Al focusses on the study and construction
of agents (things that act) that do the right thing (that behave rationally).

Within this document, the term “Al” will therefore be used mainly as a generic term to refer to
Machine Learning, Natural Language Processing, Computer Vision, and other techniques
adapted to work with Earth Observation data. The term “Al4EO” will refer to the use of EO data
with Al techniques.

Al technique. It is an Al-based way of achieving a task. A single Al technique can be applied to
various EO use-cases.

AUC (Area Under the Curve) is a scalar metric that summarises performance across all
thresholds; in xAl it typically refers to the area under deletion or insertion curves, measuring how
rapidly a model’s prediction confidence decreases or increases as the most important features
(per an explanation) are progressively removed or added. Higher AUC indicates more faithful
explanations.

Bottleneck architecture is a machine learning concept where the information flow is reduced to
a lower dimensional representation. In the field of deep learning, this concept denotes a vector
layer where the preceding and following layers are larger, forcing the model to learn a suitable
compression and decompression of the (usual) high-dimensional information.

Chunk s a small, usually fixed-size text window extracted for use by an LLM in training or retrieval-
augmented generation. Chunks are typically defined in tokens (e.g., 256 — 1000 tokens) with
optional overlap, and they serve as the direct analogue of EO patches.

Clip is a cropped subset of an EO image or tile extracted using a user-defined area of interest
(AOI) such as a polygon or bounding box. Clips have variable size and shape and are used to
restrict computation to the relevant geographic region.

Concept is a meaningful, human-understandable feature or property used by e.g. a Concept
Based Model to describe an input. Concepts serve as intermediate variables between raw data
and predictions and can be binary, categorical, or continuous. They are typically chosen because
they are semantically clear to domain experts and useful for explaining or guiding the model’s
predictions.

Concept Based Model (CBM) is a machine learning model that makes predictions through an
intermediate layer of human-interpretable concepts. Instead of mapping inputs directly to
outputs, it first infers a set of predefined concepts (e.g., “leaf is yellow”, “soil moisture is low”)
and then uses those concept values to produce the final prediction. This design aims to improve
interpretability, allow concept-level supervision, and enable users to inspect or intervene in the
model’s reasoning.
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Contrastive Learning is a machine learning approach where a model learns representations by
comparing examples. It is encouraged to pull together (“positively pair”) representations of
similar or related inputs (e.g. two augmented views of the same image, or an Image and a caption)
and push apart (“negatively pair”) representations of dissimilar inputs. By learning to distinguish
what should be close versus far in representation space, the model builds useful, general-
purpose features without necessarily needed explicit labels.

Corpus is a collection of text sources assembled for training, retrieval, or evaluation of language
models. A corpus is defined by shared scope, preprocessing rules, and metadata conventions,
and is the text-processing analogue of EO imagery. Corpus is at the top of the typical LLM /
Generative Al hierarchy: Corpus — Document — Shard — Excerpt — Chunk — Token.

Deep Learning (DL). It is a subfield of machine learning, using deep neural networks. With the
depth of the model being represented by the number of layers, it is often considered that more
than three layers (including input and output layer) qualifies as “deep” learning.

Documentis a single text source within a corpus, such as a PDF, web page, report, or chat thread.
Documents are the primary ingestion unit in Large Language Model (LLM) pipelines and typically
carry metadata like title, author, date, language, and provenance.

Downstream task. A downstream task is a specific application or prediction problem that uses
representations learned earlier (often in a pretraining stage). After a model learns general
features, such as embeddings via contrastive or self-supervised learning, it is adapted or
evaluated on downstream tasks like classification, retrieval, segmentation, forecasting, or
recommendation. The downstream task is “downstream” because it comes after and builds on
the learned representations.

Embedding is a learned numerical representation of an item (such as a word, image, document,
user or sensor record) as a fixed-length vector (usually with many dimensions). The embedding
is trained so that important properties and relationships of the item are captured in the vector’s
values, making it easier for a model to compare items, find patterns, or use them in downstream
tasks.

Embedding Space is the geometric vector space formed by embeddings, where each item is a
point (vector) in that space. The space is structured so that distance and directions reflect
semantic or functional similarity: items that are related or alike are placed close together, and
unrelated items are far apart. Operations in the space (e.g., nearest-neighbour search, clustering,
vector arithmetic) can therefore be used to reason about relationships between items.

EO Use-Case. It is a specific application in Earth Observation in which a product or service could
potentially be used. Some examples of EO use-cases can be found on the ESA website. An EO
use-case is agnostic of its potential solutions, and various solutions (in the scope of this
document: Al techniques) can be proposed for a single EO use-case.

Excerpt (or segment) is a variable-length subset of a document selected because it matches a
task, query, or structural boundary. Excerpts reflect “regions of interest” in text, such as a section,
paragraph range, or retrieved span.

Explainable Al (xAl) is a set of methods and model designs that make an Al system’s decisions
understandable to humans. It aims to reveal why a model produced a particular output, what
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evidence it relied on, and how its internal reasoning connects inputs to predictions, so users can
assess trustworthiness, fairness, and correctness.

Foundation models are a type of Al models that are trained on a massive amount of data and
can be adapted to a wide range of tasks.

Generative Al (GenAl) is a class of machine-learning systems that learn patterns from existing
data and then produce new content, such as text, images, audio, video, code, or structured data,
that is statistically and semantically similar to what they were trained on. In practice, generative
Al models don’t just label or predict; they create, by sampling from a learned probability
distribution over possible outputs conditioned on a prompt or context.

Imagery is a collection of Earth Observation images acquired by a sensor and treated as a
coherent product for analysis. Imagery often implies shared spatial reference, acquisition
context (time, orbit, sensor), processing level, and metadata, and can refer to s scene set or a
multi-temporal stack rather than a single file. Imagery is at the top of the typical EO-AI hierarchy:
Imagery — Image - Tile — Clip — Patch — Pixel.

Image is a single EO raster representing one acquisition over a geographic area. In EO-Al, an
image is typically multi-band (e.g., spectral bands beyond RGB) and georeferenced, meaning
every pixel corresponds to a real-world location and ground sampling distance.

Input-Level Explainability refers to methods that explain a prediction by pointing to which parts
of the input influence it and how. The focus is on linking the model’s decision to specific input

features, regions, tokens, or time steps (e.g., “these pixels”, “these words”, “this sensor
segment”) that were most responsible for the output.

Large Language Model (LLM) is a neural network trained on large-scale text (and sometimes
other modalities) to learn statistical patterns of language for generating, transforming, or
interpreting text. LLMs operate over token sequences and can be adapted to tasks like question
answering, summarisation, extraction, and reasoning via prompting or fine-tuning.

Machine Learning (ML) is the study of computer algorithms that learn how to improve
automatically through experience. It is seen as a part of Artificial Intelligence. Machine Learning
algorithms build a model based on sample data, known as “training data”, to make predictions or
decisions without being explicitly programmed to do so.

mloU (mean Intersection over Union) is a localisation metric that measures the average overlap
between an explanation map (e.g. saliency or attribution) and a reference region or mask (such
as afield boundary or land-cover proxy), computed as the intersection divided by the union of the
two areas. Higher mloU indicates more spatially accurate explanations.

Model-Level Explainability refers to understanding the overall behaviour and internal logic of
the model, rather than a single prediction. It aims to describe how the model works globally, its
learned rules, representations, decision pathways, and typical failure modes, so users can
reason about what the model tends to do across many inputs. Examples include interpretable
architectures, global surrogate models, rule extraction, and analysis of learned concepts or
features.
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Output-Level Explainability refers to methods that make the output itself more interpretable
and informative. This includes explaining what the output means, how confident the model is,
and how different output components relate to each other (e.g., probabilities, uncertainty ranges,
concept scores, or textual rationales that clarify the prediction).

Open vocabulary querying is the ability to search an embedding space using arbitrary natural-
language queries, without being limited to a fixed set of predefined labels or classes. Both the
query and the items in the collection are embedded into the same vector space, and retrieval is
done by similarity (e.g., nearest neighbours). Because the “vocabulary” is open, users can ask for
concepts or descriptions the system was not explicitly trained to classify and still find
semantically matching items.

Patch is a small, usually fixed-size window cut from an EO image or clip to serve as input to a
Machine Learning model. Patches are commonly sampled with overlap / stride and may carry
labels (annotations) for supervised learning, making them the core training and inference unit in
EO-AI

Pixel is the smallest addressable element of an EO image, storing one value per band for a
specific ground area. Pixel size corresponds to spatial resolution, so each pixel represents a real-
world footprint (e.g., 10 m x 10 m) and acts as the atomic unit from which tiles, clips, and patches
are composed.

Prompt is the input, as text or other modalities, given to a generative Al model to specify the task,
context, constraints, or desired output. Prompts guide the model’s generation by conditioning
what it produces, ranging from a short instruction to a structured template with examples, rules,
or data.

Retrieval Augmented Generation (RAG) is an approach where a generative model (such as a
Large Language Model) produces answers using both its learned parameters and external
information retrieved at query time. Given a user query, the system first retrieves relevant
documents or records (often via embeddings and similarity search) and then conditions the
generator on that retrieved context to produce a grounded response. This helps improve factual
accuracy, coverage of up-to-date knowledge, and traceability of outputs.

Scene is a single, sensor-defined EO acquisition covering a contiguous geographic area captured
at one time, often corresponding to a satellite overpass or flight line. A scene is the natural “unit
of capture” in remote sensing, and may later be processed into imagery products, tiled, clipped,
or stacked into time series.

Self-eXplainable Al (S-xAl) refers to models that are inherently structured to produce
explanations as part of their normal operation. Rather than adding an explanation after the fact,
these models generate predictions through interpretable intermediate steps (e.g. concepts,
rules, rationales, or explicit feature contributions), so the explanation is tightly coupled to the
decision process.

Self-Supervised Learning is a training paradigm where a model learns from unlabelled data by
creating its own supervision signal. It does this by solving a proxy (pretext) task whose labels are
automatically derived from the data itself (e.g., predicting masked words in text, the next frame in
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a sequence, or matching two augmented views of the same image). The goal is to learn general
representations that can later be used for other tasks.

Shard (or partition / page) is a standardised subdivision of a corpus or large documents created
for scalable storage or distributed processing. Shards are system-driven units (e.g., index shards,
dataset file splits, or PDF pages) and are not necessarily aligned with model input boundaries.

TCAV (Testing with Concept Activation Vectors) is an explainable Al method that quantifies how
much a human-defined concept (e.g. vegetation, imperviousness, crop stress) influences a
model’s prediction by measuring the directional sensitivity of internal neural activations to that
concept, enabling explanations in terms that are meaningful to domain experts rather than
individual features.

Tile is a standardized spatial subdivision of an EO image or imagery collection based on a fixed
tiling grid. Tiles are primarily a data management and distribution unit that makes very large
scenes easier to store, index, and process consistently.

Token is the smallest unit of text processing by an LLM, usually a subword or symbol produced
by a tokenizer. Tokens are the atomic elements that form sequences and chunks, and model
limits like context size are measured in tokens.

Tokenizer is a pre-processing component that converts raw inputs into a sequence of tokens (and
back again). Depending on the modality, it may segment text into subwords or symbols, images
into patches or visual codes, audio into frames or discrete units, or other signals into learned
token forms. It defines the token vocabulary and mapping to integer IDs a model consumes,
shaping how information is represented, how sequences are formed, and how limits like context
size are measured.

Vision Language Model (VLM) is a multimodal neural network trained to jointly process visual
inputs (images or video) and text so it can relate what is seen to what is said. VLMs learn shared
representations across vision and language, enabling tasks such as image captioning, visual
question answering, grounding text in images, and reasoning over combined visual-text context.

Weakly-Supervised Learning is a setting where a model is trained using imperfect, incomplete,
or noisy labels instead of fully accurate annotations. The supervision may come from coarse
labels (e.g., image-level tags instead of pixel labels), heuristic rules, distant supervision, or
crowd-sourced annotations with errors. The model learns to make robust predictions despite the
lower quality of the training signal.
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1. Introduction

Earth Observation (EO) is a cornerstone of global environmental monitoring, providing
continuous, large-scale data on the Earth surface and atmosphere. The growing availability of
high-resolution satellite imagery, complemented by airborne and ground-based sensors, enables
valuable insights into agriculture, urbanisation, water resources, and climate change, supporting
evidence-based environmental and disaster management (Kansakar and Hossain, 2016). The EO
landscape is rapidly expanding, producing petabytes of heterogeneous data that demand
advanced computational tools for effective analysis (Vance et al., 2024). Situated within the
broader “big data” paradigm—defined by volume, velocity, variety, and veracity, and often termed
Big Earth Data (Sudmanns et al., 2020)—EO increasingly depends on scalable and interpretable
analytical approaches.

Machine Learning (ML), and particularly Deep Learning (DL), have become central to EO data
exploitation, enabling automated image analysis and predictive modelling for applications such
as land cover classification and yield estimation (Paudel et al., 2021; Zhao et al., 2023). Advances
in transformer-based foundational models have further expanded EO capabilities (Jakubik et al.,
2023). However, DL models remain complex and opaque, raising concerns about interpretability,
reproducibility, and trust (Hassija et al., 2024; Taskin et al., 2024). Challenges including
hallucinations, limited generalisability, and biased training data have constrained broader
adoption (Gawlikowski et al., 2023; Reichstein et al., 2019; Zhu et al., 2017).

To address these issues, eXplainable Al (xAl) has emerged to increase transparency and
accountability in Al-driven EO systems (Hohl et al., 2024; Reichstein et al., 2019; Roscher et al.,
2020; Wang et al., 2023). Self-explainable Al (S-xAl) integrates interpretability directly into model
architectures, producing intrinsic explanations—such as reasoning traces or concept
activations—without relying on post-hoc methods (Hou et al.,, 2024). Such approaches are
especially relevant in EO, where interpretability underpins trust and scientific validation in high-
impact applications like land use monitoring and climate resilience planning (Ghamisi et al.,
2024; Taskin et al., 2024). In this context, we willimplement a novel self-explainable Al framework
that combines EO embeddings and concept-based model-level explainability, inspired by Meta’s
Large Concept Models, with output-level explainability through retrieval-augmented generation
(RAG) and Large Language Models (LLMs). This integrated approach enhances transparency and
contextual understanding, enabling structured reasoning and domain-grounded natural
language explanations across various environmental EO use cases.

This document contains the introduction of the state-of-the-art (SOTA), gaps, and the proposed
S-xAl architecture (Section 2), an overview of the SOTA and data for the use cases (Section 3), and
a description of the end-users and impact (Section 4).
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2. Methodology

This section contains a literature review (Section 2.1), gap analysis (Section 2.2), S-xAl
architecture design and description (Section 2.3), requirements (Section 2.4), software and
hardware considerations (Section 2.5), data and knowledge considerations (Section 2.6), and the
ethical and privacy aspects (Section 2.7)

2.1.Literature review

As artificial intelligence becomes more broadly available and practically applicable, various
domains explore the potential benefits of state-of-the-art machine learning and deep learning
methods. Remote sensing and Earth observation domains are no exception. Large deep learning
models are actively being developed and applied for a broad range of tasks, such as land use
classification (Haider et al., 2025), change detection (Liu et al., 2024), flood risk prediction
(Ruthra et al., 2025), and many others. Jakubik et al. (2023) have recently published their
TerraMind model — a multi-modal "any-to-any" generative model, which outperforms several
state-of-the-art models within the field of Al for EO on several relevant benchmark tests. The
authors hope and expect the TerraMind model to be used as a foundation for numerous different
downstream tasks. Foundation models and other pre-trained models are especially importantin
the field of Earth observation, where large deep learning architectures are often necessary to
appropriately capture and represent complex spatial and temporal relationships. An extensive
summary and evaluation of foundation models, applicable in the domain of remote sensing and
Earth observation has recently been published by Xiao et al. (2024).

Despite the impressive performance of deep learning models on various benchmark tasks, the
complexity of their decision-making process is proving to be problematic when the models are
meant to inform high-impact decisions. For this reason, explainable Al (xAl) research has gained
significant traction in the recent years. In fact, the intensive development in this domain has
resulted in numerous different perspectives and approaches to improving the transparency of the
decision-making process of Al models. A comprehensive systematic overview of XAl approaches
within the domain of remote sensing has been made by Hohl et al. (2024).

While most of these methods provide insight about the link between model input and output,
some argue that quantifying this link alone is not sufficient for a fully transparent and trustworthy
decision. In their large-scale survey of explainable Al in environmental sciences, Schiller et al.
(2025) point out that despite the recent growth of attention on explainable Al, there is a lack of
focus on trust. The authors recommend for a more human-centric approach, where evaluating
the user needs, gaining stakeholder trust, and defining explanations on a case-specific basis are
of utmost importance. O’Loughlin et al. (2025) agree with the notion that post hoc input-output
relationship explanations are not sufficient for a fully trustworthy model and advocate for
component-level explainability. They support their recommendations with positive examples of
physics-based modelling, where internal model calculations are grounded in well-defined
physical processes, and discuss the potential of physics-informed Al modelling.

Meanwhile, the concept of self-interpretable (or self-explainable) Al is gradually gaining
prominence in the field of deep learning. Self-interpretable neural networks take explainability
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into account by design. There are multiple ways to approach this. Ji et al. (2025) offer a
comprehensive survey of self-interpretable neural networks and organise the literature into five
main categories: attribution-based, which explains predictions by highlighting influential inputs
or features; function-based, which constraints model structure so its internal computations
remain transparent; concept-based, which aligns decisions with human-understandable
concepts; prototype-based, which justifies outputs by comparing them to representative
examples; and rule-based, which expresses reasoning through explicit logical or decision rules.
The authors also emphasise that concept-based self-interpretable models can allow direct
human intervention, for instance by refining or correcting the concepts that guide the model’s
predictions.

Considering the benefits of human intervention-compatible models, it is, perhaps, unsurprising
that there are numerous recent developments related to concept-based self-interpretable
models. Among these developments, variations and improvements of the Concept Bottleneck
Model (CBM) (Koh et al., 2020) are some of the most active and prominent. CBMs work by having
the model first predict a set of human-interpretable concepts (such as attributes or intermediate
properties) and then use those concepts, rather than raw features alone, to produce the final
prediction, creating a “bottleneck” that makes the decision process more transparent and easier
to inspect or adjust.

The definition of concepts and their interactions is proving to be a significant challenge with many
caveats. Shang et al. (2024) highlight the difficulty of collecting an adequate and complete set of
concepts. They propose using an optimisable vector-based approach to find missing concepts
and linking them back to clear meanings with a novel incremental concept discovery module.
Vandenhirtz et al. (2024) and Xu et al. (2024) propose potential improvements to the CBM with
regards to the relationships between different concepts, and how they react to human
intervention. Researchers at Meta also acknowledge the benefits of concept-based
interpretation (LCM Team et al., 2024). They have presented a novel, concept-based perspective
on language modelling: large concept models. This new model architecture can represent textin
a more efficient, interpretable, and controllable manner, compared to classic token-based
language models.

2.2.Gap analysis

Despite the described advances in deep learning and foundation models for EO, the current
state-of-the-art approaches leave several critical gaps that limit their interpretability and
practical trustworthiness. Most existing models lack domain-alighed concept spaces that
connect EO embeddings to human-understandable geospatial knowledge, and their
explanations remain primarily post hoc-focused on input-output attributions rather than
stakeholder-relevant reasoning. Moreover, model-level and output-level explainability are rarely
integrated, resulting in fragmented understanding of how predictions are formed. Temporal
dynamics, essential for environmental and agricultural applications, are often ignored, as are
mechanisms for incremental discovery of new or evolving concepts.

The S-xAl methodology we propose in the next section addresses these gaps through a dual
explainability architecture that combines concept-based model transparency with RAG-
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enhanced output reasoning. By aligning EO and textual embeddings into a shared embedding
space, the approach enables interpretable, concept-level representations of EO data, while a
Retrieval-Augmented Generation component grounds predictions and concepts in domain-
specific knowledge to produce clear, human-centric explanations. Its modular design ensures
adaptability across use cases and provides a scalable foundation for future extensions towards
temporally aware and scenario-driven explainable Al, thus bridging the divide between powerful
EO prediction models and trustworthy, scientifically grounded decision support.

2.3.Proposed S-xAl Methodology

Methodology

Our approach will make EO-based predictions better understandable by providing clear text-
based explanations. This will be done by:

(i) constructing domain-specific, text-alighed representations (or embedding spaces)
from EO data and auxiliary geospatial data, through a concept-based alignment
model.

(i) Enhancing the explainability of the output of this model by a Retrieval Augmented
Generation (RAG) based agentic Al component, to generate human-understandable
and stakeholder-oriented explanations.

In this way, our S-xAl architecture will leverage both model explainability and output
explainability. In other words, with our dual approach we will both text-align the intermediary
(embedding) stage of the model and “ground” the model predictions using domain specific

user query

data as text

knowledge documents (Figure 1).

Model explainability Output

explainability

(NLP/LLM )
. . interpretable reasoning) R GUI .W'th
multimodal alignment EO/text — reasoning explainable
EO data model embeddings —_ model m(_)d_el
queries as predictions
A embeddings A
(open vocabulary
tasks)
o s (] o
CNN CLIP SFT
‘ ChatGPT RAG
black box glass box black box glass box

domain
concepts

construct EO image captions from
domain-specific geospatial data

build domain-specific knowledge
data base to ground LLM reasoning

Figure 1: AETHER Self-Explainable EO-Al model concept

The alignment model (for concept-based model explainability) in Figure 1 will be developed as
follows. First, EO data is encoded to embeddings, either using location encoders (e.g., SatCLIP),
EO image encoders, multimodal EO encoders, or pre-trained geospatial foundation models (e.g.,
AlphaEarth, Terramind). Secondly, text captions are encoded using text encoders (e.g., CLIP text

AETHER_RB_V1.docx Page: 14/40



“i*/”/E«Q“ Eesa kb

encoder) to text embeddings. EO embeddings and text embeddings can be aligned by either
training both encoders (Radford et al., 2021), or by freezing the EO encoder and only training the
text encoder (Zhai et al., 2022), or vice versa. The second method is more flexible, because it
works with fixed EO encoders such as large geospatial foundation models, and requires less
training data (Zhai et al., 2022), but is constrained by the richness (information content) of the
pre-existing EO embeddings. We will try this method first, because fewer data points will be
needed, and consider training both encoders if performance is not sufficient compared to
benchmarks. Next, concepts will be queried using open-vocabulary tasks (i.e., in natural
language, not limited to a fixed set of terms or phrases) in the text-aligned EO embedding space,
and we will quantify the similarity of embeddings to concept embeddings to quantify how well
these concepts are present in the EO data.

The reasoning model (for concept-based output explainability) will be developed as follows: we
will train shallow classifier or regression heads on the EO embedding space (e.g., a Generalized
Linear Model or Random Forest) to predict the target variables. We will try predicting using the
embeddings directly and using the similarities with queried concepts. At the same time, we will
employ Retrieval Augmented Generation (RAG) to link the task (using the relevant concepts) to
relevant parts of domain-relevant knowledge documents and then prompt an LLM-based
workflow to explain the model predictions given the concept activations, predictions, and
extracted related knowledge. Figure 2 provides a more detailed illustration of the architecture.

Earth observation data

Concept space

* ( 1 | Concepts

EO embedding

EO efficient
» concept
model Vegetation

density

Numerical prediction
Woody

. encroachment
contrastive
learning Soil wetness

Retrieval

Habitat

fragmentation 0 Augmented »
“<land cover> in <region name> with <av. rainfall> » » ) Species Generation

at <elevation> with <list of indicator species> text encoder text embedding diversity

present at <distance> from nearest road.” :I

Text caption (created rule-based '

from geospatial data)

Expert knowledge
documents

Figure 2: Illustration of the modular architecture of the model, where each component can be developed
independently.

RAG module

The RAG approach will be tailored to our system that aligns EO and text embeddings, performs
open-vocabulary retrieval, and then generates user-oriented explanations. When tile concepts
are produced from auxiliary geospatial datasets and rules on top of e.g. an EO foundation model,
retrieval can be powerful, but the resulting concepts are weak/synthetic labels. They inherit
assumptions and potential drift from the source datasets and rules. The RAG component
therefore will serve two core functions: semantic grounding (clarifying what a retrieved concept
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means, consistently and in user language) and transparent justification (explaining why the
concept could have been retrieved and how reliable that association is).

The proposed corpus mix (see Table 1) reflects those two functions. A strong backbone of
authoritative definitions, standards, and ontologies provides stable meanings, synonyms, and
hierarchical relations so open-vocabulary queries map to clear, evergreen concepts (ideas or
terms whose meaning stays stable over time and across contexts) rather than rule-specific
jargon. EO sensor/product and measurement guides will ground explanations in what EO can
observe, enabling “why” narratives tied to physical signals, scales, and acquisition constraints.
To address weak labeling directly, a dedicated slice of annotation rulebooks and provenance
notes documents data lineage, thresholds, spatial/temporal buffers, and known failure modes,
so the generator LLM can state provenance and qualify uncertainty instead of guessing.
Complementing this, confounder/validation references shall supply default caveats and error
modes that help prevent overconfident explanations.

Finally, the corpus mustinclude short concept explainers, application playbooks, and contextual
briefs to keep outputs useful and audience appropriate. Concept cards enforce consistency and
readability for frequent terms; playbooks and context sources enable “so-what” guidance; and
case-based or review material anchors responses in realistic magnitudes and common patterns.

Good quality of the documents is critical for RAG to work well. Therefore, a scoring rubric will be
provided by WP200 to WP300 to allow easy selection of usable information. This rubric should
score on aspects such as: Relevance and scope, authority and stability, concept grounding
usefulness, EO explainability value, weak-label provenance value, user-oriented generation
value, chunkability and retrievability, and metadata findability. Scores in different categories can
be weighted to calculate a final value, that should result in a keep, park, or reject decision for
each document.

Table 1: RAG corpus composition overview. Corpus share percentages represent initial values and can be
adjusted based on evaluation feedback.

Document Type Contribution to RAG Approximate
corpus share (%)

Authoritative definitions, Canonical meanings for open-vocab concepts; 25%
standards and glossaries disambiguation; guards against rule drift
Domain taxonomies/ontologies | Structured relationships amongst concepts 10%

(broader/narrower/related); improves clustering and
explanations

EO sensor/product handbooks “How EO sees X” and what signals mean; supports “why 15%
and measurement guides retrieved?”
Method/application reviews Consensus workflows and typical assumptions; good for 10%

“how reliable / how done?”

Uncertainty, validation and Disclaimers for weak labels; explains failure modes 10%
confounder references

AETHER_RB_V1.docx Page: 16/40



Ai*/”/E«Q“ Eesa kb

Document Type Contribution to RAG Approximate
corpus share (%)

Annotation rulebooks and Allows RAG to explain synthetic labels used and their 8%
provenance documents limits
User-oriented concept cards Short, concise, friendly answers aligned to audience 15%

and explainers

Local/sector/context briefs “So-what” relevance; turns concepts into actionable 7%
context

Overall, the chosen mix makes the RAG a trust and calibration component: it converts open-
vocabulary retrieval into explanations that are semantically correct, physically grounded,
provenance-aware, and genuinely usable for decision-making.

Temporal effects

The proposed S-xAl methodology aims to develop concept-based explainable models that
operate on embeddings derived from EO data. In its initial version, the methodology focuses on
predicting and explaining target variables from single “state” representations, each
corresponding to a specific timestamp, allowing for transparent interpretation of relationships
between learned EO concepts and model outputs. While this approach provides a clear
framework for explainability, it is recognised that many real-world applications, specifically in the
environmental domains, inherently depend on temporal dynamics. Therefore, a potential future
extension of the methodology will consider incorporating time-series embeddings, enabling the
model to capture temporal effects and seasonal trends across, e.g., the crop growing period or
longer environmental processes. The use of geospatial foundation models that already encode
temporal information, e.g., Presto and AlphaEarth Foundations (Brown et al., 2025; Tseng et al.,
2023), is envisaged as a promising direction. Additional extensions, such as the generation of
counterfactual or scenario-based concept descriptions to support “what-if” analyses, are
identified as valuable follow-up studies. Nevertheless, the initial focus is on achieving concept-
level explainability for single-state predictions, while paving the way toward temporally aware and
scenario-driven S-xAl approaches.

Unified Architecture

The Al architecture and processing workflow provide a unified backbone for all three the EO-
based use cases of the project. This backbone will be tailored for each use case based on their
goals, data, and concepts. The design is modular and extensible, comprising generic
components for data ingestion, EO data encoding, text encoding, concept extraction,
downstream task prediction, and RAG-enhanced explanation (see Figure 3). This modularity
enables flexible localisation, and adaption to new domains or datasets by varying input data
source, trained models, and knowledge corpora, while maintaining a consistent and transparent
explainability framework across applications.
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& Data Processing &
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(NDVI, LST, reflectance)
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Embedding preparation
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Unified Workflow Across Use Cases

Each use case—Crop Yield, Urban Heat Island, Biodiversity—utilises the same modular Al pipeline. The
Data & Knowledge Layer changes according to domain-specific inputs, while the Concept Bottleneck
Model and RAG + LLM Explainability components remain constant. This enables a single proof-of-
concept prototype to adapt seamlessly across domains by swapping datasets, domain ontologies, and
output mappings.

Figure 3: Initial unified Self-Explainable EO-Al architecture for the AETHER project

2.4.Requirements

As described in Section 2.3, the S-xAl architecture will be designed as a modular system,
leveraging EO embedding models, a concept-based alignment module, and an advanced RAG
component using agentic Al. While this design enhances the explainability, transparency,
reusability, and scalability across the use cases, it also introduces specific constraints on model
design and data processing:

e Embedding model dependency: The semantic representation of EO data relies on a
fixed embedding space, which constrains the range of domain-specific fine-tuning
applicable per use case.

o Explainability module integration: The requirement for interpretability restricts the use
of certain black-box models that might be more high-performing.

o RAG framework consistency: All use cases must operate with a shared RAG pipeline
architecture, limiting the diversity of data access and context retrieval mechanisms.

o Modularity enforcement: Each component must remain decoupled, affecting the ability
to optimise end-to-end performance for individual use cases.

In the following subsections, the software and hardware requirements, including computational
and storage, as well as the data and knowledge requirements for model development and use in
the proof of concepts for the use cases, will be further described.
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2.5.Software & Hardware

System maturity is progressed through four successive (approximately two-month) prototype
iterations (proto-0 to proto-3), with proto-1 defining the S-xAl methodology handoff (WP200 to
WP500), proto-2 supporting intermediate review (IR) feedback, and proto-3 achieving TRL-5 at

final review (FR).

Table 2: Software and Hardware Requirements

Req ID

Requirement

Metric

Target

Measurement

SW-01

SW-02

SW-03

SW-04

ourT-01

ouT-02

GUI-01

AlLAl model and training
components shall be implemented
in Python using open-source
packages, validated by PROTO-1.
Depends on DATA-EO-01, DATA-
AUX-01/02, DATA-ITER-01.

% model code in
Python

100%

Repo language
scan +
environment file
review

The system shall integrate at least
one external LLM API provider for
LLM functionality by PROTO-2.
Depends on: KNOW-01/02/03,
PROMPT-01.

#LLM APIs
integrated

Integration test
with live API calls

The RAG/LLM orchestration shall
be implemented using a standard
OSS framework (LangChain,
LangChain4J, or Semantic Kernel)
by PROTO-0. Depends on: KNOW-
01/02/03, PROMPT-01, DATA-AUX-
02.

Framework usage

1 selected
framework in use

Codebase
inspection

The system shall implement
operational capabilities (logging,
traceability, authentication) using
standard libraries by PROTO-2.
Depends on: KNOW-02/03,
PROMPT-01.

Presence of ops
modules

All 3 present

Checklist +
integration tests

Model predictions shall be
exportable to at least one standard
GIS-readable geospatial format by
PROTO-2. Depends on: DATA-EO-
03, DATA-ITER-01.

# supported GIS
formats

Export + load test
in QGIS

Explanations shall be generated in
plain text or Markdown and be
exportable/copyable from the GUI
by PROTO-2. Depends on: KNOW-
03, PROMPT-01.

Explanation format
support

Text + Markdown

Ul acceptance test

End-user POCs shall be developed
in C#/.NET with optional Semantic
Kernel integration by PROTO-2.
Depends on: PROMPT-01, KNOW-
01/03.

Runtime / stack
compliance

100%

Build pipeline +
code review
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Req ID Requirement Metric Target Measurement

GUI-02 The GUI shall be a modular web Architecture Frontend/backend | Repo structure +
application with separate frontend | compliance separation deployment review
and backend APl by PROTO-2. implemented

Depends on: DATA-EO-03.

GUI-03 The backend API shall be usable External API >= 3 external Postman / Swagger
both by the GUI and by external usability endpoints tests
clients/automated workflows by documented and
PROTO-2. Depends on: DATA-EO- tested

02, KNOW-01/02.

API-01 Data and model results shall be Protocol + format JSON + GeoJSON Integration tests
exchanged via Web services or compliance supported
WebSockets using JSON and
GeoJSON by PROTO-2. Depends
on: DATA-AUX-01, OUT-01.

DEV-01 Backend services and GUI shall be | K8S deployment 100% success on Cl deploy + smoke
containerized with Docker and success NILU cluster tests

deployable via Kubernetes on
NILU’s cluster by PROTO-2.
Depends on: KNOW-02/03, DATA-
EO-02.

OPS-01 All code shall be publicly hosted CI/CD availability Cl + CD pipelines Check GitHub

on GitHub with CI/CD enabling available Actions / pipelines
parallel partner development by
PROTO-0. Depends on: DATA-EO-
01/KNOW-02, PROMPT-01.

The Al model(s) and all model training-related components will be developed in Python, using
open-source packages. The machine learning components will be implemented in PyTorch. For
LLMs we will use existing LLM APl services (e.g., Mistral Al, EuroLLM, OpenAl, Anthropic). The RAG
component and related operational functionality of the POCs will be developed using standard
frameworks such as LangChain (Python), LangChain4J (Java), or Microsoft’s Semantic Kernel
(supporting multiple programming languages), leveraging standard ecosystem components (e.g.
JVM or CLR based) and libraries for logging, traceability, user authentication, etc.

The Al model(s) will partly use pre-trained model components and train new model components
as well. For this, we will use the Wageningen University & Research HPC infrastructure Anunna’.
As such, data will be stored on local data servers that can be accessed from the HPC. In case
more capacity is needed we will temporarily use Microsoft Azure based cloud resources.

Output predictions from the Al model will be exported to geospatial data formats so they can be
loaded into GIS software by end-users, if required (depending on the GUI). Explanations will be
generated in plain text or Markdown format, and simple copy functionality will be provided in the
GUI. The RAG/LLM module potentially can also be used to drive GUI functionality that supports
or enhances open vocabulary tasks that allow an end-user to access the latent embedding space

! https://wiki.anunna.wur.nl/
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using natural language queries (NLQ), i.e. to interact with the explanations and explore the
reasons and concepts, e.g., to find areas or time periods with similar or opposite conditions.
Integrating such functionality could be part of the proof-of-concept development, driven by
feedback from our end-user evaluations.

The end-user application(s) (i.e., the POCs) will be developed using C# and .NET with possible
integration of Microsoft’s Semantic Kernel for Al-driven functionalities such as interaction with
LLMs. The Graphical User Interface (GUI) will be designed as a modular web application,
separating frontend and backend API. This makes sure that the service can be used by the GUI
but also by external applications or in automated workflows as an Al agent. The GUI will connect
to multiple APIs to combine data, e.g., to display geospatial data combined with explanations
and background information. Data and model results will be exchanged through standard Web
services or WebSocket protocols, using JSON and GeoJSON for structured communication. The
backend services and GUI components will be containerized using Docker/Kubernetes within
NILU’s cluster during development and evaluation, for the duration of the project.

All code will be developed publicly on GitHub with appropriate CI/CD infrastructure to allow
parallel development from different partners of the project.

2.6.EO Data & Knowledge
Table 3: EO Data and Knowledge Requirements

Req ID Requirement Metric Target Measurement

DATA- AlLEO and auxiliary datasets used in Share of datasets 100% Dataset inventory

EO-01 the project shall be publicly available | with open/public review + license
(openly licensed) for all use cases, licence verification
validate by PROTO-1. checklist

DATA- EO input data shall be sourced EO data coverage of >=95% spatial | coverage report

EO-02 (according to the selected EO AOIs coverage per against AOI / time
encoder specification) achieving UC AOI windows
complete AOI coverage by PROTO-1.

DATA- After the EO encoder is fixed, the Guideline 1 guideline Documentation

EO-03 project shall deliver end-user completeness package per review + UC lead
guidelines for acquiring required EO UC where EO sign-of
data (when rasters are needed) by rasters
PROTO-0. required

DATA- For each UC auxiliary geospatial data | Auxiliary table 1 table per UC Data handover

AUX-01 will be provided as a locations x availability per UC check + schema
features table (rows = locations, validation
columns = numerical features),
including labelled and unlabelled
locations, by PROTO-0.

DATA- The data loader shall support on-the- | Dynamic feature >=99% runs Automated

AUX-02 fly selection of auxiliary feature selection success without caption-
columns for caption generation using | rate selection generation runs
predefined rules, implemented by errors over auxiliary
PROTO-1. tables
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Req ID Requirement Metric Target Measurement
KNOW- UC leads shall provide a curated Concepts per UC 10-30 Concept registry
01 concept list for retrieval/explanation concepts review + count per
by PROTO-0, updated iteratively ucC
thereafter.
KNOW- UC leads shall provide domain- Knowledge >=50 Document
02 relevant knowledge documents per documents per UC inventory + de-
UC for RAG, with first full set by duplication report
PROTO-0 and iterative curation with
WP200 thereafter.
KNOW- Knowledge documents shall cover all | Language coverage; 100% language | Formatscan +
03 required explanation languages, be machine-readability; | coverage; >= access check _
machine-readable (plain text / access constraints 95% machine- language
Markdown preferred) and be freely readable; 0 metadata audit
accessible (no DRM / password / restricted-
encryption), validated by PROTO-O0. access docs
PROMPT- | Prompts for explanation tuning, Prompt set >=1 Prompt repository
01 evaluation datasets, and guardrails completeness explanation review + UC lead
shall be co-developed with UC leads prompt + 1 approval
and version-controlled, with an initial evaluation /
validated prompt set per UC by guardrail
PROTO-1. prompt per UC
DATA- Data hyperparameters (e.g. EO patch | Hyperparameter 100% of Release checklist
ITER-01 size, pretraining sample counts, documentation releases have + config snapshot
target sample counts, number of coverage documented stored per version
concepts, labelling rules) shall be data settings
defined and updated iteratively
based on model performance, with
documented finalised values before
each release (PROTO-1 and later).

The project will be based on publicly available data for all use cases, thus limiting issues related
to licensing, data protection regulations, or exposure of personal and sensitive information.

EO data will be dependent on the EO encoder. For example, for location encoders or pre-
computed geospatial foundation models we will only require latitude/longitude coordinates,
while for other encoders we will require EO input data (e.g., Sentinel-2). Therefore, EO data will
be sourced by WP200 (who develop the EO encoders) rather than the UC owners in WP300.
However, after the model is finished and the EO encoder is fixed, we will include guidelines for
end-users how to acquire relevant EO data, if applicable.

Other auxiliary geospatial data (to generate text captions with) are UC specific and will be
provided by UC leads. They will be provided in the form of a table, where rows list different
locations, and columns list different numerical features (e.g., mean temperature). These data can
be provided both for locations with target numericalvalues (e.g., crop yield or urban temperature)
and without. In the latter case, these data can be used for contrastive learning. This auxiliary data
can be extensive, because the relevant data columns will be selected later, during on-the-fly
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generation of captions using pre-established rules in the data loader. Auxiliary data will be
sourced from publicly available datasets.

UC leads will then list the concepts of interest (approx. 10-30) which will be queried, as well as
the knowledge documents (100 or more, domain and use case goal relevant, e.g. selected from
scientific or grey literature) for the RAG component. These data sets will be curated in an iterative
process as the model continues to develop, in collaboration with WP200. Knowledge documents
need to be provided in all languages in which explanations need to be generated. Documents
preferably are in plain text or Markdown format or at least need to be in a machine-readable
format. Besides that, they need to be freely accessible, without copy protection, passwords, or
encryption. To tune the explanations to specific end-user needs, prompts will be developed in
collaboration with the use cases. Similar for any other prompts that might be required, e.g., to be
used as evaluation datasets or guardrails to prevent undesired outputs.

Other specific data requirements, such as patch size, number of pre-training data points, number
of target data points, number of concepts, etc., will be established iteratively as the model,
architecture, and workflows are developed, guided by model performance and data need
priorities.

2.7.Ethical & Privacy Aspects

The AETHER project adheres to the highest standards of ethical conduct and data protection,
ensuring that the design and deployment of self-explainable Earth Observation (S-xAl) models
remain transparent, responsible, and compliant with European and international regulations. All
activities will align with the EU General Data Protection Regulation (GDPR), the EU Al Act, and the
European Code of Conduct for Research Integrity (ALLEA - All European Academies, 2023;
European Parliament and Council of the European Union, 2024, 2016).

AETHER’s ethical framework addresses three core dimensions:

e Data ethics and privacy: The project uses only publicly available or properly licensed
Earth Observation and ancillary datasets. No personally identifiable information (PIl) is
collected or processed. Where socio-economic or location-specific indicators are used
(e.g., in the Urban Heat Island case), data are anonymised and aggregated to ensure
individuals and communities cannot be re-identified.

e Algorithmic transparency and accountability: The S-xAl architecture incorporates
explainability by design, allowing model reasoning and outputs to be interpretable,
traceable, and auditable. This approach supports fairness and mitigates risks of bias in
training data, ensuring that automated insights can be verified by domain experts and
stakeholders.

e Responsible use and societal impact: AETHER promotes equal access to Al-enabled
Earth Observation insights and safeguards against misuse. Human oversight remains a
key requirement in all decision-support scenarios, especially when outcomes could
affect communities or environmental management. The integration of retrieval-
augmented generation and large language models follows strict guidelines for factual
grounding, security, and bias control.
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Table 4: Ethical and Privacy Requirements

ReqID Requirement Metric Target Measurement

ETH-01 | All project activities shall comply Compliance audit 100% at each Formal compliance
with GDPR, the EU Al Act, and the pass rate, PII review; 0 PlI checklist + internal
ALLEA European Code of Conduct detection incidents incidents audit sign-off;
for Research Integrity, including a automated PII
strict prohibition on the collection, scanning of all data
storage, or processing of any assets + periodic
personally identifiable information manual spot checks.
(PII). Continuously enforced from
PROTO-0 onward.

ETH-02 | Only publicly available EO and Share of datasets with | 100% Dataset inventory +
ancillary datasets shall be used, valid public / license license / provenance
validated by PROTO-0 and proof verification
rechecked at every major release.

ETH-03 | The system shall include bias / Bias evaluation 100% cycles Bias test suite run +
fairness evaluation over training completion rate; completed; >= | mitigation log in DMP
and inference data, with mitigation mitigations logged 1 mitigation if / repo
actions documented, first bias found
complete cycle by PROTO-1 and
repeated each release.

ETH-04 | Ethical monitoring shall be DMP update cadence; | Periodic DMP DMP version history
continuous throughout the project, Ethics risk register updates from and documented
with ethical risks and mitigation completeness; Ethics | PROTO-1 change logs; Ethics
measures documented in the Data lead review onward; 100% risk register review;
Management Plan (DMP) starting completeness of identified Signed ethics review
from PROTO-1 and updated ethical risks memos by the
periodically. An internal ethics lead tracked and internal ethics lead at
(NILU) shall formally review and mitigated; each milestone
validate these risks and mitigations 100% of major
at each major project milestone. milestones

formally
reviewed

ETH-05 | All project outputs (including data, FAIR score; % of FAIR FAIR score >= FAIR self-assessment
models, and documentation) shall gaps addressed; agreed project | tool results; FAIR and
comply with FAIR principles and Responsible Al threshold; >= Responsible Al
Responsible Al requirements. assessment coverage | 80% of FAIR action-tracking log;
Assessment methods shall be gaps Completed FAIR and
applied to all use cases, with the addressed by Responsible Al
first full assessment completed by Final; 100% of | assessment
PROTO-2, and repeated for Final UCs assessed templates with UC
release. by Final lead sign-off

Ethical monitoring will be an ongoing process throughout the project lifecycle. Partners will
document ethical risks and mitigation measures in data management plans, supported by an
internal ethics lead contributed by NILU as part of the consortium team, and alignment with ESA’s
data governance requirements. Outputs will comply with FAIR (Findable, Accessible,
Interoperable, Reusable) principles (Wilkinson et al., 2016) and Responsible Al best practices,

ensuring transparency, reproducibility, and trust across all use cases. As this an Al driven project,
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a special focus will be on Al ethics and a tailored assessment and validation® developed during
the EU Horizon project FAIRICUBE? will be applied.

3. Use Cases

The overarching theme of this projectis “Reliable & fast monitoring in unpredictable times”, which
reflects some of the main challenges of our times. We have selected three use cases:

1. Mapping of biodiversity and its loss due to climate change.
2. Cropyield prediction and rapid assessment of the effect of floods, droughts, and fires.
3. Detection of urban heat islands and their evolution due to global warming.

These use cases collectively span natural, agricultural, and urban ecosystems, ensuring the
broad applicability and relevance of the S-xAl framework. They address high-priority policy
domains aligned with the EU Green Deal, Farm to Fork Strategy, and Nature Restoration Law,
while providing multi-scale and multi-domain validation of Al interpretability methods across
diverse geographies, from temperate Europe to tropical Africa and Latin America. Together, they
deliver strong scientific and societal impact, advancing biodiversity conservation, food security,
and urban climate resilience. Moreover, they leverage rich and openly available datasets,
including SatBird, S2BMS, Sentinel-1/2 archives, Copernicus Land Monitoring Service products,
and urban climate and socio-economic databases, which support reproducibility, scalability,
and FAIR data compliance, thereby enhancing the scientific robustness and long-term utility of
the project outcomes.

In the following, we will provide a motivation for each use case, along with an overview of the
available experience, models, and datasets. To structure the description and documentation we
will make use of Al canvases, similar in concept to business canvases. An Al Canvas is a
structured framework designed to describe and analyse how artificial intelligence can address a
specific problem or opportunity. It helps teams clarify a use case by systematically capturing key
elements such as the objective, data sources, model approach, stakeholders, success metrics,
risks, and ethical considerations. In this project, the Al canvas will support the consolidation of
multiple use cases by providing a common structure for comparing needs, data availability, and
analytical workflows. This enables alignment within the project, identification of shared
components (e.g., datasets, models, or components and infrastructure for the prototypes), and
prioritisation of efforts.

This work directly aligns with the European Space Agency’s (ESA) strategic objectives for xAl by
embedding transparent, self-explainable Al methodologies. Furthermore, it will demonstrate the
potential for scalability to address broader climate-related hazards, such as floods and storms, and will
promote operational readiness by delivering transparent and actionable tools designed to strengthen
community resilience. The project will rigorously adhere to FAIR data principles, ensuring that all

! https://hub.fairicube.eu/validation-ai-ethics.html
? https:/fairicube.eu
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spatially explicit results and models are made available to urban planners, decision-makers, and local
actors to foster widespread adoption and impact (Kumar et al., 2024; Wilkinson et al., 2016).

Following the agreements with ESA, the use case on urban heat islands will receive highest priority
during the project. Due to the higher maturity level of the biodiversity dataset, the S-xAl development will
begin with that use case instead. If either the biodiversity or crop yield use case shows significant
underperformance compared to the xAl SOTA in the related domain (considering a possible prediction
accuracy vs explainability trade-off), it may be dropped from further development into a proof-of-
concept.

3.1.Use case 1: Biodiversity

Biodiversity monitoring is crucial for understanding the health of ecosystems, detecting changes
over time, and guiding conservation efforts to maintain the balance of natural systems. Climate
change disrupts species distributions, e.g., by altering habitats and climatic conditions, and
increases the frequency of extreme weather events, all of which can push vulnerable species
toward (local) extinction (Bellard et al., 2012).

Species distribution models (SDMs) use geospatial data to predict where species occur and are
vital for conservation planning, but traditional models rely on manually selected covariates, e.g.,
land cover, distance from road, and mean temperature, limiting their capacity to capture complex
ecological patterns (Beery et al.,, 2021; Elith and Leathwick, 2009). Recent deep learning
approaches improve predictive power by using raw Earth Observation (EO) data (Cole et al., 2023;
Teng et al., 2023; van der Plas et al., 2025b, 2025a), but often lack transparency, making it difficult
to interpret ecological relevance (Ryo et al., 2021). To address this, post hoc explainable Al
methods have been used to improve the transparency of deep SDMs, for example by computing
LIME and Shapley values (Ryo et al., 2021; Zbinden et al., 2025).

Here, we will go beyond post hoc explainable Al methods and develop a self-explainable Al EO
model to predict species distributions directly from raw EO data, while explaining what EO
features were used to make these predictions, based on documented habitat preferences of the
species. See Table 5 for the Al canvas of this use case. This will allow the model to identify from
EO data complex concepts not easily defined by hand, such as habitat fragmentation, density of
vegetation, habitat mosaics, thus enabling the monitoring of these biodiversity features at scale.

To that end, we will use two machine learning ready, public data sets of Sentinel-2 EO data
coupled with species observations: SatBird and S2BMS. SatBird is a data set of bird observations
from EBird in the USA and Kenya (Teng et al., 2023), and S2BMS is a data set of butterfly
observations from UKBMS in the UK (van der Plas et al., 2025b). As auxiliary geospatial data we
will use public geographic, bioclimatic, land cover and human footprint data. We will compare
our model performance against the existing benchmarks for these data sets, and ask the model
to explain, per species, what EO data features drove the predictions. We will evaluate these
explanations both quantitatively, using standard benchmark metrics, and qualitatively, by
consulting experts to judge the explanation quality and validity.
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Table 5: Al Canvas for the biodiversity monitoring use case

Use case objective

Predict multi-species species encounter likelihood /
habitat suitability and deliver self-explainable
biodiversity indicators at hotspot scale.

Success: Strong SDM generalisation across regions +
explanations that are faithful, stable, and ecologically
plausible.

Modelling approach

Shared EO foundation encoder (EO embeddings per
tile); text/semantic encoder (embeddings of
habitat/species terms). EO — Semantic alignment
trained with weak EO-caption pairs (from ancillary data
and rules) to form a joint EO-semantic space. A light
SDM head predicts species encounter likelihood from
EO embeddings. Explainability via open-vocabulary
probing of the aligned space (ranked ecological drivers
+ similarity maps), supported by EO attributions and
RAG-LLM narratives grounded in ecology corpus.

Study regions
UK: Butterflies
USA: Birds

Current xAl SOTA
MaskSDM (attribution-based explainability)

Value proposition

Scalable biodiversity monitoring with transparent
habitat / pressure drivers, supporting conservation
action and policy trust.

3.2.Use case 2: Crop Yield

Data

1) EO: depends on EO encoder.

2) Ancillary: S2BMS (Butterfly observations (UK)),
SatBird (bird observations (USA),
geography/topography, bioclimatic, land-use, human
footprint

3) Captioning rules: TBD, based on auxiliary data.

4) Corpus: Biodiversity reports; ecological literature,
EO specs, concept cards.

Initial concepts

land-cover type; greenness/NDVI; canopy density;
wetland index; open water; cropland intensity;
grassland fraction; shrub land; bare soil/rock; urban /
impervious; elevation; slope/aspect; distance-to-water;
fragmentation/edge density; burn/scar; phenology
phase; drought/heat/rain anomalies; human footprint;
protected status.

Outputs

Species encounter probabilities per location, including
text explanations. Can be aggregated to species
richness.

Current xAl benchmarks
shapley values, AUC. Benchmarks not relevant as other
data was used.

Stakeholders

Conservation agencies/NP managers; biodiversity
NGOs / policy units, ecological researchers, citizen-
science platforms.

Cropyield prediction and rapid damage assessment is vital for ensuring food security, optimizing
resource management, and supporting farmers' decision-making processes. In conventional
monocultural agriculture, yields are highly sensitive to changes in climate conditions, including
altered rainfall patterns, rising temperatures, and more frequent extreme weather events (Lobell
et al., 2011). In contrast, agroforestry systems—which integrate crops, trees, and sometimes
pastures—offer greater resilience (Ngaba et al., 2024; Santos et al., 2019) but can still sufferyield
losses from natural disasters like droughts, floods, storms, and wildfires, which disrupt
ecosystem services and reduce landscape stability, and potentially lead to significant carbon
emissions and crop yield loss.

Mapping and predicting crop yield in croplands and agroforestry is a challenging task
(Muruganantham et al., 2022), primarily due to the temporal, spatial, structural, phenological,
and species diversity of the vegetation species, as well as due to the ever-increasing
unpredictability of the weather events. Long time series of Sentinel-1 and Sentinel-2 data
combined with machine learning offer promising tools for capturing interactions between tree
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cover, crop yield, and environmental factors in agroforestry (Oliveira et al., 2025) as well as
conventional croplands (Paudel et al., 2022, 2021). Studying this within our project will support
the development of scalable, cost-effective monitoring frameworks essential for managing food
security and land use in climate-vulnerable regions like the Sudano-Sahel (Bayala et al., 2014;
Burke and Lobell, 2017).

The Al canvas for this use case is shown in Table 6. We will leverage a rich collection of crop yield
datasets over 50,000 crop-cut observations from GROW Africa (Geyman et al., 2025) and One
Acre Fund', covering seven African countries (Kenya, Rwanda, Ethiopia, Malawi, Burundi,
Tanzania, and Zambia) between 2012 and 2021. These datasets include detailed crop
performance records for cereals such as maize, sorghum, millet, rice, wheat, and teff, as well as
legumes and root crops like beans, groundnuts, and sweet potatoes. Data attributes include
fresh and dry weights, yield (tons/ha), harvest dates, and field-level classifications. In addition,
over 10,000 tree-level cocoa yield records from CocoaSoils? and parkland agroforestry data from
Burkina Faso (Oliveira et al., 2025) will enrich the analysis. Complementary benchmark datasets,
including CY Bench (a global reference dataset for sub-national crop yield forecasting) and
FLAME (Field-Level Asset Mapping Dataset for England’s Agricultural Sector), will support cross-
regional validation (Paudel et al., 2025; Sheikh et al., 2025). High-precision georeferenced data
(£0.08 km) and lower-precision samples (5 km) provide broad spatial coverage, facilitating
scalable model calibration across diverse agro-ecological zones and farming systems.

Together, these datasets form one of the most comprehensive multi-country resources for
developing and validating self-explainable Al models for crop yield prediction and agroecosystem
monitoring. The S-xAl architecture on the black box models described in the literature (Oliveira
et al., 2025; Paudel et al., 2022, 2021) will be used to generate predictions of crop yield using
available in-season EO data based on the crop calendar and well-known yield-related concepts,
as well as predict crop yield for the next season subject to additional information on
meteorological conditions and natural disasters. his will allow us to study the effect of climate
change and natural disasters on crop yield, e.g., by altering the precipitation to simulate dryer
and wetter seasons and simulating flood and drought events.

Table 6: Al Canvas for the crop yield prediction use case

Use case objective Data

Provide accurate, scalable, and explainable crop 1) EO: Sentinel-1, Sentinel-2

yield estimation models integrating EO, ancillary 2) Ancillary: Biophysical (soils, topography), climate
biophysical layers, and contextual datasets. Deliver | (temperature, rainfall), environmental quality,
actionable insights for policy, climate adaptation, socio-economic and built-up layers

and farm-level decision-making. 3) Captioning rules: TBD, based on auxiliary data.

4) Corpus: Agronomic standards, EO documentation, crop
and yield modelling literature, validation guidelines,
concept cards, local context briefs.

Modelling approach Initial concepts
The model uses a shared EO encoder for Key layers include land-cover type, greenness/NDVI,

! https://oneacrefund.org/

2 https://cocoasoils.org/
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spatiotemporal embeddings and a semantic
encoder for crop, soil, and climate concepts.
Weakly supervised EO-caption alignment creates a
joint concept space, with a lightweight head
predicting crop yield. Explainability is provided via
ranked agronomic/biophysical terms, EO attribution
maps, and RAG LLM narratives, with provenance
and uncertainty calibration.

Study regions

West Africa (Burkina Faso)

East Africa (Kenya, Rwanda, Tanzania, Zambia,
Malawi & Burundi)

Current xAl SOTA

Multimodal EO-weather-soil features; feature
attribution (SHAP/IG) for climate, soil and
management drivers; temporal attention and
growth-stage attribution; counterfactual what-if
analysis on rainfall, temperature and inputs; spatial
saliency and prototype fields for high- and low-yield
patterns.

canopy density, and drought/heat/rainfall anomalies,
which can be integrated with additional biophysical,
climate, and socio-economic data

Outputs

Crop-specific and aggregated yield maps, hotspot change
alerts highlighting significant yield gains or losses,
explanatory products such as ranked agronomic and
biophysical concepts, spatial similarity layers and
attribution maps, and RAG-grounded textual rationales
that describe key drivers of yield patterns with provenance
and uncertainty.

Current xAl benchmarks

Faithfulness via deletion/insertion AUC (AUC approx. 0.90),
localisation accuracy of attribution maps against field-
level proxies (mloU up to approx. 0.5), stability of spatial
and temporal attributions across seasons and domains,
counterfactual validity through plausible and minimal
perturbations (e.g. weather and inputs), and human
alignment via agronomic expert usefulness assessments.

Stakeholders
Senior researchers in Burkina Faso universities;
Smallholder farmer(s) in Burkina Faso parklands; NGOs

Value proposition

A scalable and explainable crop-yield intelligence
system that delivers transparent, data-driven
insights on agronomic and environmental drivers,
strengthening decision-making for climate
adaptation, food security, and policy planning.

3.1.Use case 3: Urban Heat Islands

Urban areas are characterised by significantly higher temperatures compared to their surrounding rural
regions, a phenomenon driven by dense infrastructure, limited green cover, greater absorption and
delayed release of heat by anthropogenic structures (Deilami et al., 2018). These Urban Heat Islands
(UHIs) exacerbate the vulnerability of urban socio-ecological systems to climate change, particularly as
heat waves intensify and high-temperature days become more frequent, posing critical threats to public
health, infrastructure, and ecosystems (Tehrani et al., 2024). The consequences are severe, including
increased cooling energy demands, increased air pollution, and heightened heat-related health risks,
disproportionately affecting vulnerable populations (Hartinger et al., 2024). Projections indicate that by
2050, fatalities linked to UHIs and associated heat waves could surpass those from infectious diseases
globally (Hartinger et al., 2024).

UHI is a well-documented phenomenon, but only since the beginning of 2000s has it gained a significant
research interest, largely because of the widespread use of remote sensing data and GIS solutions and
the sharp rise in Machine Learning and Al based approaches in UHI studies over the last decade (He et
al., 2023). State-of-the-art studies apply Al models to process complex, heterogeneous datasets,
including satellite imagery, urban morphology indicators, loT sensor data and socio-economic variables,
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which affect urban climatic zones (Shatnawi et al., 2025; Snaiki and Merabtine, 2025). In UHI monitoring,
Al solutions are used to create high resolution spatial and temporal maps of thermal conditions (Yiet al.,
2025). Deep Learning models, particularly Convolutional Neural Networks (CNNs) and U-Net
architectures, are employed for the semantic segmentation of satellite imagery, providing products
which can support UHI mitigation policies (Shaamala et al., 2025). Beyond that, latest Al models are
transitioning from simple Land Surface Temperature (LST) estimation to UHI forecasting and predictive
warning systems (Hoang and Nguyen, 2025).

Despite undeniable recent advancements in UHI analysis, there are still significant challenges
connected with available datasets, Al models application, solutions scalability and transferability
(Marey et al., 2025). UHI research relies largely on remote sensing data and specialised in-situ
measurements. Yet remote sensing satellites equipped with thermal imaging sensors are mostly limited
to Landsat, MODIS and VIIRS missions, which do not provide sufficient temporal (Landsat) or spatial
(MODIS, VIIRS) resolution. Ground-based sensor networks are costly to establish and maintain, and
have limited spatial coverage (Snaiki and Merabtine, 2025). Conventional Al models often fall short in
providing transparent explanations for why specific urban neighbourhoods face greater heat risks. The
“black box” nature of many Al algorithms can hinder their adoption by urban planners who require clear,
justifiable insights for decision-making (Mallick and Algadhi, 2025; Shaamala et al., 2025). This inherent
lack of transparency and the challenge of integrating nuanced, dynamic local variations limit the utility
of many current Al-driven assessments in developing targeted and effective urban adaptation strategies
(Kumar and Bassill, 2024, Srivastava and Maity, 2023).

To bridge this gap, this project outlines an innovative urban heatisland case study focused on developing
and applying S-xAl. The study aims to identify urban zones prone to higher temperatures by integrating
data on climate exposure, land use patterns, infrastructure characteristics, and socio-economic
vulnerabilities. A key objective is to explain how specific urban features such as building materials,
vegetation density and type, and urban morphology affect ventilation and influence local heat stress.
This approach will yield interpretable and actionable adaptation strategies, such as optimised NBS
initiatives and the strategic installation of water bodies and green area to mitigate identified risks.
Guatemala City, the Hague, and Krakéw have been selected as pilot cities for this research, leveraging
diverse datasets including high-resolution canopy cover, Normalised Difference Vegetation Index (NDVI)
as a proxy for Urban Temperature Regulation (UTR), and indicators of Urban Green Infrastructure Quality
(Bokwa, 2023; van Eupen et al., 2024; Winograd et al., 2023). Other data inputs for UHI models typically
include detailed urban structural data, land surface temperatures, vegetation indices, and
meteorological parameters like air temperature, humidity, and wind speed (Kumar et al., 2016; Tehrani
etal., 2024).

The Al canvas for this use case is given in Table 7. Specifically, this project will pursue the following
objectives: first, to develop S-xAl models that integrate satellite-derived land surface temperature data
with comprehensive urban morphological and socio-economic datasets, thereby clearly identifying the
primary drivers of localised heat risk. Second, to produce readily understandable visual and textual
outputs tailored for city planners, policymakers, and community stakeholders, facilitating informed
decision-making. Thirdly, to incorporate future climate change projections into the S-xAl models to
enable robust, long-term adaptation planning.
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Table 7: Al Canvas for the urban heat island use case

Use case objective

Map and forecast urban heat patterns at block scale
and deliver self-explainable heat-risk indicators for
planning and adaptation. Success: Accurate UHI
intensity prediction across cities and seasons, with
explanations that are physically consistent and
actionable for planners.

Modelling approach

A shared EO encoder generates spatiotemporal
embeddings per urban tile, while a tabular/graph
encoder processes socio-economic and built-
environment features. A multimodal head predicts
continuous LST and discrete UHI classes with temporal
generalisation. Explainability is provided via feature
attributions, concept-based probes (e.g., vegetation,
imperviousness), and RAG-style narratives with
provenance and uncertainty.

Study regions

Guatemala City: Metropolitan area with LST-based UHI
gradients and socio-environmental vulnerability zones.
Krakéw: City-wide LST maps, hot- and cold-spots,
detailed built-up and vegetation structure.

Optional: Third Latin American or European city with
comparable EO and municipal datasets.

Current xAl SOTA

Integrated tabular EO features; concept
activation/TCAV for vegetation and imperviousness
concepts; counterfactual what-if analysis on greening
and densification; prototype/critic tiles for typical hot
and cool patterns.

Value proposition

Scalable, explainable UHI intelligence that links
physical drivers, social vulnerability, and planning
levers, enabling targeted cooling investments, resilient
urban design, and climate-health policy with high
public trust.

Data

1) EO: Landsat-8/9, Sentinel, Copernicus LST,
DEM/slope.

2) Ancillary: Municipal land-use/land-cover and
forest/green area maps; population density and road
network; building height, built-up age, and 3D block
models; poverty and vulnerability indicators; heatwave
frequency/intensity projections.

3) Labelling rules: UHI labels from LST deviation
relative to city mean and heat-stress comfort
thresholds, grouped into 8-10 ordered LST/UHI stress
classes (from cold pixels to very high stress)

4) Corpus: Urban heat standards, urban form and
vulnerability ontologies, EO documentation for LST and
urban indicators, UHI modelling literature, validation
guidance, concept cards, city context briefs.

Initial concepts

Key layers include land cover, vegetation and canopy
metrics, building and impervious surface
characteristics, climate and heat indicators, and socio-
economic factors such as vulnerability and access to
green space, integrated to support urban heat and
greening analyses.

Outputs

High-resolution LST and UHI class maps; hot-
spot/cold-spot layers; block heat-risk indicators;
priority greening and cooling intervention maps;
dashboards for inequality and vulnerability overlays;
explanation products: ranked drivers (e.g. vegetation,
imperviousness, height), concept similarity maps,
attribution maps, text rationales with provenance and
uncertainty.

Current xAl benchmarks

Faithfulness via deletion/insertion AUC (AUC approx.
0.90), localisation accuracy using mask overlap where
available (mloU approx. 0.5), stability under
perturbations and domain shift, counterfactual validity
via plausibility and minimality checks, concept quality
for TCAV through consistent positive concept scores
across space and time, human alignment typically
assessed through expert usefulness studies.

Stakeholders

Local citizens and community organisations in
vulnerable neighbourhoods; city planners and
municipal authorities; climate NGOs and international
development partners; and urban researchers.
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4. End Users and Impact

The project addresses the urgent need for scalable, self-explainable Al methods to support
biodiversity monitoring, crop yield prediction, and urban heat island assessment, supporting
global commitments under the Kunming-Montreal Global Biodiversity Framework and the UN
Sustainable Development Goals (SDGs 2, 11, 13, and 15). The primary end-users include
environmental and agricultural agencies, urban planners, research institutions, and policy
makers who require explainable, data-driven insights for conservation, food security, and climate
adaptation. By integrating Earth Observation data, deep learning, and self-explainable Al,
AETHER aims to deliver interpretable and decision-ready outputs that strengthen trust and
uptake across sectors. All datasets, models, and analytical workflows will be developed in line
with FAIR (Findable, Accessible, Interoperable, and Reusable) principles (Wilkinson et al., 2016)
to ensure long-term accessibility and reproducibility. Moreover, natural language-based
interfaces will enable both expert and non-technical users to interact intuitively with model
results, promoting transparency and inclusion. Ultimately, the project will enhance evidence-
based policy and planning, support capacity development, and enable open data reuse across
biodiversity, agriculture, and urban sustainability domains, delivering lasting societal and
environmental impact beyond the project’s duration.

4.1.Use case 1: Biodiversity

This component enhances the explainability of Al models for biodiversity assessment and
conservation. End-users include ecology researchers and practitioners from networks such as
LTER-LIFE", the Netherlands Institute of Ecology (NIOO)? and the UK Centre for Ecology &
Hydrology (UKCEH)?. Engagement will be conducted through established research partnerships
and collaborative activities. Two user groups will be directly involved in the testing of the
developed Al system: ecologists from UKCEH representing the scientific community, and a data
analyst from the Peak District National Park representing conservation practitioners. The
explainable outputs will help these users better interpret ecosystem trends, inform conservation
priorities, and improve communication with policy and public audiences.

4.2.Use case 2: Crop Yield

The agricultural component focuses on developing self-explainable Al models for crop yield
prediction in West Africa, supporting food and income security and climate resilience.
Engagement will target governmental agencies, agricultural researchers, NGOs, farmer
organisations, and private-sector partners, ensuring open access to yield predictions. Confirmed
user groups include university scholars in Burkina Faso representing the scientific community
and project managers from a cocoa company in West Africa. Additionally, individual smallholder
farmers in Burkina Faso will be asked to join the end user testing. These users will validate and

! https:/lter-life.nl/en

2 https://nioo.knaw.nl/en

3 https://www.ceh.ac.uk/
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apply the models to enhance agricultural planning, optimise resource allocation, and guide
sustainable intensification in both staple and cash crop systems.

4.3.Use case 3: Urban Heat Islands

The urban component develops explainable Al models to map and mitigate urban heat island
effects, delivering actionable information to planners and local decision-makers. In Guatemala
City, end users involved in this project will include municipality employees (two confirmed senior
staff members from planning city office) and NGOs active in NBS implementation, urban
sustainability and social resilience (two confirmed senior staff members of CALMECAC?). In
Krakow, we have confirmed the collaboration of one senior staff member from the Department of
Environment, Climate, and Air (WS), and the collaboration will build on earlier UHI mapping and
the city’s participation in the EU “100 Climate-Neutral and Smart Cities by 2030” Mission.
Furthermore, a representative of the Sendzmir Foundation? promoting sustainable development
will be involved in the end-user testing and provide feedback from the level of NGOs. Finally, two
private residents of central Krakow will provide citizen-level feedback. The resulting tools and
indicators, such as canopy cover and NDVI, will support equitable urban planning, informed
policymaking, and improved community adaptation to heat-related risks.

! https://www.fundacioncalmecac.org/

2 https://sendzimir.org.pl/en/
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5. Summary & Conclusion

The AETHER project will develop a self-explainable Al (S-xAl) framework that integrates deep
learning, concept-based reasoning, and retrieval-augmented generation to produce transparent,
scientifically grounded, predictions from Earth Observation data. By aligning EO embeddings
with human-interpretable concepts and generating text-based explanations, the system will
bridge the gap between powerful Al models and stakeholder needs for trust, traceability, and
actionable insight. The architecture is modular, scalable, and applicable across three high-
impact use cases—biodiversity monitoring, crop yield prediction, and urban heat island
assessment—each supported by rich public datasets and extensive end-user engagement.
Overall, AETHER will demonstrate how self-explainable Al can improve environmental monitoring
and decision-making by offering interpretable outputs, adhering to FAIR data principles, and an
inclusive design that empowers scientists, planners, and communities to better understand and
respond to climate-related challenges.
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