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Abstract 
The Self-Explainable Artificial Intelligence (S-xAI) for Earth Observation (EO) project AETHER 
develops and demonstrates a transparent EO-AI modelling approach that unites deep learning 
with explainable reasoning and knowledge grounding. Its architecture integrates spatiotemporal 
EO embeddings, semantically grounded concept base representations, and retrieval-augmented 
generation modules to translate satellite data into physically meaningful variables and 
stakeholder-oriented explanations. Concept annotations are automatically derived from 
auxiliary spatial data via rule-based templates, enabling large-scale, weakly supervised training 
while preserving scientific traceability. 

AETHER will design, implement, and evaluate a proof-of-concept system across three use cases: 
(i) detection of urban heat islands and their evolution due to global warming, (ii) crop yield 
prediction and rapid assessment of the e`ect of floods, droughts, and fires, and (iii) mapping of 
biodiversity and its loss due to climate change. The three use cases will share a common 
embedding backbone and explainability framework for consistency and reusability. The system 
will produce self-interpretable concept layers, accurate predictions, and text-based 
explanations grounded in both scientific evidence and stakeholder knowledge. 

The proof-of-concept will span two or three of the use cases and will employ 10-30 representative 
concepts per use case, requiring under ten GPU-weeks for training and less than one terabyte of 
storage. The results will showcase a scalable, e`icient, and trustworthy S-xAI framework that 
bridges EO observation, concept-based interpretation, and human-centric explanation, 
advancing transparency, reproducibility, and reliability in EO-AI applications for environmental 
science and decision support. 
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Acronyms and Abbreviations (alphabetical order) 

AETHER AI for Earth Transparency using Human-Explainable Reasoning 

AI Artificial Intelligence 

AI4EO Artificial Intelligence for Earth Observation 

AUC Area Under the Curve 

CL Contrastive Learning 

CV Computer Vision 

DL Deep learning 

ECV Essential Climate Variables 

ESA European Space Agency 

ESP Earth Systems Predictability 

EO  Earth Observation 

GenAI Generative Artificial Intelligence 

GUI Graphical User Interface 

IPCC Intergovernmental Panel on Climate Change 

LLM Large Language Model 

ML Machine Learning 

mIoU Mean Intersection over Union 

POC Proof of Concept 

RAG Retrieval Augmented Generation 

RB Requirements and Activity Baseline  

SOTA State Of The Art 

SoW Statement of Work 

S-xAI Self-eXplainable Artificial Intelligence 

TCAV Testing with Concept Activation Vectors 

TRL Technology Readiness Level 
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UC Use Case 

VLM Vision Language Model 

xAI Explainable Artificial Intelligence 
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Definitions 

The following definitions, many like those of the SoW, are used in the context of this RB report: 

Artificial Intelligence (AI). The Oxford Dictionary defines Artificial Intelligence as the theory and 
development of computer systems able to perform tasks normally requiring human intelligence, 
such as visual perception, speech recognition, decision-making, and translation between 
languages. Artificial Intelligence is a branch of computer engineering, designed to create 
machines that behave like humans. More generically AI focusses on the study and construction 
of agents (things that act) that do the right thing (that behave rationally). 

Within this document, the term “AI” will therefore be used mainly as a generic term to refer to 
Machine Learning, Natural Language Processing, Computer Vision, and other techniques 
adapted to work with Earth Observation data. The term “AI4EO” will refer to the use of EO data 
with AI techniques.  

AI technique. It is an AI-based way of achieving a task. A single AI technique can be applied to 
various EO use-cases. 

AUC (Area Under the Curve) is a scalar metric that summarises performance across all 
thresholds; in xAI it typically refers to the area under deletion or insertion curves, measuring how 
rapidly a model’s prediction confidence decreases or increases as the most important features 
(per an explanation) are progressively removed or added. Higher AUC indicates more faithful 
explanations. 

Bottleneck architecture is a machine learning concept where the information flow is reduced to 
a lower dimensional representation. In the field of deep learning, this concept denotes a vector 
layer where the preceding and following layers are larger, forcing the model to learn a suitable 
compression and decompression of the (usual) high-dimensional information. 

Chunk is a small, usually fixed-size text window extracted for use by an LLM in training or retrieval-
augmented generation. Chunks are typically defined in tokens (e.g., 256 – 1000 tokens) with 
optional overlap, and they serve as the direct analogue of EO patches. 

Clip is a cropped subset of an EO image or tile extracted using a user-defined area of interest 
(AOI) such as a polygon or bounding box. Clips have variable size and shape and are used to 
restrict computation to the relevant geographic region. 

Concept is a meaningful, human-understandable feature or property used by e.g. a Concept 
Based Model to describe an input. Concepts serve as intermediate variables between raw data 
and predictions and can be binary, categorical, or continuous. They are typically chosen because 
they are semantically clear to domain experts and useful for explaining or guiding the model’s 
predictions. 

Concept Based Model (CBM) is a machine learning model that makes predictions through an 
intermediate layer of human-interpretable concepts. Instead of mapping inputs directly to 
outputs, it first infers a set of predefined concepts (e.g., “leaf is yellow”, “soil moisture is low”) 
and then uses those concept values to produce the final prediction. This design aims to improve 
interpretability, allow concept-level supervision, and enable users to inspect or intervene in the 
model’s reasoning. 
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Contrastive Learning is a machine learning approach where a model learns representations by 
comparing examples. It is encouraged to pull together (“positively pair”) representations of 
similar or related inputs (e.g. two augmented views of the same image, or an Image and a caption) 
and push apart (“negatively pair”) representations of dissimilar inputs. By learning to distinguish 
what should be close versus far in representation space, the model builds useful, general-
purpose features without necessarily needed explicit labels. 

Corpus is a collection of text sources assembled for training, retrieval, or evaluation of language 
models. A corpus is defined by shared scope, preprocessing rules, and metadata conventions, 
and is the text-processing analogue of EO imagery. Corpus is at the top of the typical LLM / 
Generative AI hierarchy: Corpus – Document – Shard – Excerpt – Chunk – Token. 

Deep Learning (DL). It is a subfield of machine learning, using deep neural networks. With the 
depth of the model being represented by the number of layers, it is often considered that more 
than three layers (including input and output layer) qualifies as “deep” learning. 

Document is a single text source within a corpus, such as a PDF, web page, report, or chat thread. 
Documents are the primary ingestion unit in Large Language Model (LLM) pipelines and typically 
carry metadata like title, author, date, language, and provenance. 

Downstream task. A downstream task is a specific application or prediction problem that uses 
representations learned earlier (often in a pretraining stage). After a model learns general 
features, such as embeddings via contrastive or self-supervised learning, it is adapted or 
evaluated on downstream tasks like classification, retrieval, segmentation, forecasting, or 
recommendation. The downstream task is “downstream” because it comes after and builds on 
the learned representations. 

Embedding is a learned numerical representation of an item (such as a word, image, document, 
user or sensor record) as a fixed-length vector (usually with many dimensions). The embedding 
is trained so that important properties and relationships of the item are captured in the vector’s 
values, making it easier for a model to compare items, find patterns, or use them in downstream 
tasks. 

Embedding Space is the geometric vector space formed by embeddings, where each item is a 
point (vector) in that space. The space is structured so that distance and directions reflect 
semantic or functional similarity: items that are related or alike are placed close together, and 
unrelated items are far apart. Operations in the space (e.g., nearest-neighbour search, clustering, 
vector arithmetic) can therefore be used to reason about relationships between items. 

EO Use-Case. It is a specific application in Earth Observation in which a product or service could 
potentially be used. Some examples of EO use-cases can be found on the ESA website. An EO 
use-case is agnostic of its potential solutions, and various solutions (in the scope of this 
document: AI techniques) can be proposed for a single EO use-case. 

Excerpt (or segment) is a variable-length subset of a document selected because it matches a 
task, query, or structural boundary. Excerpts reflect “regions of interest” in text, such as a section, 
paragraph range, or retrieved span. 

Explainable AI (xAI) is a set of methods and model designs that make an AI system’s decisions 
understandable to humans. It aims to reveal why a model produced a particular output, what 
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evidence it relied on, and how its internal reasoning connects inputs to predictions, so users can 
assess trustworthiness, fairness, and correctness. 

Foundation models are a type of AI models that are trained on a massive amount of data and 
can be adapted to a wide range of tasks. 

Generative AI (GenAI) is a class of machine-learning systems that learn patterns from existing 
data and then produce new content, such as text, images, audio, video, code, or structured data, 
that is statistically and semantically similar to what they were trained on. In practice, generative 
AI models don’t just label or predict; they create, by sampling from a learned probability 
distribution over possible outputs conditioned on a prompt or context. 

Imagery is a collection of Earth Observation images acquired by a sensor and treated as a 
coherent product for analysis. Imagery often implies shared spatial reference, acquisition 
context (time, orbit, sensor), processing level, and metadata, and can refer to s scene set or a 
multi-temporal stack rather than a single file. Imagery is at the top of the typical EO-AI hierarchy: 
Imagery – Image – Tile – Clip – Patch – Pixel. 

Image is a single EO raster representing one acquisition over a geographic area. In EO-AI, an 
image is typically multi-band (e.g., spectral bands beyond RGB) and georeferenced, meaning 
every pixel corresponds to a real-world location and ground sampling distance. 

Input-Level Explainability refers to methods that explain a prediction by pointing to which parts 
of the input influence it and how. The focus is on linking the model’s decision to specific input 
features, regions, tokens, or time steps (e.g., “these pixels”, “these words”, “this sensor 
segment”) that were most responsible for the output. 

Large Language Model (LLM) is a neural network trained on large-scale text (and sometimes 
other modalities) to learn statistical patterns of language for generating, transforming, or 
interpreting text. LLMs operate over token sequences and can be adapted to tasks like question 
answering, summarisation, extraction, and reasoning via prompting or fine-tuning. 

Machine Learning (ML) is the study of computer algorithms that learn how to improve 
automatically through experience. It is seen as a part of Artificial Intelligence. Machine Learning 
algorithms build a model based on sample data, known as “training data”, to make predictions or 
decisions without being explicitly programmed to do so. 

mIoU (mean Intersection over Union) is a localisation metric that measures the average overlap 
between an explanation map (e.g. saliency or attribution) and a reference region or mask (such 
as a field boundary or land-cover proxy), computed as the intersection divided by the union of the 
two areas. Higher mIoU indicates more spatially accurate explanations. 

Model-Level Explainability refers to understanding the overall behaviour and internal logic of 
the model, rather than a single prediction. It aims to describe how the model works globally, its 
learned rules, representations, decision pathways, and typical failure modes, so users can 
reason about what the model tends to do across many inputs. Examples include interpretable 
architectures, global surrogate models, rule extraction, and analysis of learned concepts or 
features. 
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Output-Level Explainability refers to methods that make the output itself more interpretable 
and informative. This includes explaining what the output means, how confident the model is, 
and how di`erent output components relate to each other (e.g., probabilities, uncertainty ranges, 
concept scores, or textual rationales that clarify the prediction). 

Open vocabulary querying is the ability to search an embedding space using arbitrary natural-
language queries, without being limited to a fixed set of predefined labels or classes. Both the 
query and the items in the collection are embedded into the same vector space, and retrieval is 
done by similarity (e.g., nearest neighbours). Because the “vocabulary” is open, users can ask for 
concepts or descriptions the system was not explicitly trained to classify and still find 
semantically matching items. 

Patch is a small, usually fixed-size window cut from an EO image or clip to serve as input to a 
Machine Learning model. Patches are commonly sampled with overlap / stride and may carry 
labels (annotations) for supervised learning, making them the core training and inference unit in 
EO-AI. 

Pixel is the smallest addressable element of an EO image, storing one value per band for a 
specific ground area. Pixel size corresponds to spatial resolution, so each pixel represents a real-
world footprint (e.g., 10 m x 10 m) and acts as the atomic unit from which tiles, clips, and patches 
are composed. 

Prompt is the input, as text or other modalities, given to a generative AI model to specify the task, 
context, constraints, or desired output. Prompts guide the model’s generation by conditioning 
what it produces, ranging from a short instruction to a structured template with examples, rules, 
or data. 

Retrieval Augmented Generation (RAG) is an approach where a generative model (such as a 
Large Language Model) produces answers using both its learned parameters and external 
information retrieved at query time. Given a user query, the system first retrieves relevant 
documents or records (often via embeddings and similarity search) and then conditions the 
generator on that retrieved context to produce a grounded response. This helps improve factual 
accuracy, coverage of up-to-date knowledge, and traceability of outputs. 

Scene is a single, sensor-defined EO acquisition covering a contiguous geographic area captured 
at one time, often corresponding to a satellite overpass or flight line. A scene is the natural “unit 
of capture” in remote sensing, and may later be processed into imagery products, tiled, clipped, 
or stacked into time series. 

Self-eXplainable AI (S-xAI) refers to models that are inherently structured to produce 
explanations as part of their normal operation. Rather than adding an explanation after the fact, 
these models generate predictions through interpretable intermediate steps (e.g. concepts, 
rules, rationales, or explicit feature contributions), so the explanation is tightly coupled to the 
decision process. 

Self-Supervised Learning is a training paradigm where a model learns from unlabelled data by 
creating its own supervision signal. It does this by solving a proxy (pretext) task whose labels are 
automatically derived from the data itself (e.g., predicting masked words in text, the next frame in 
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a sequence, or matching two augmented views of the same image). The goal is to learn general 
representations that can later be used for other tasks. 

Shard (or partition / page) is a standardised subdivision of a corpus or large documents created 
for scalable storage or distributed processing. Shards are system-driven units (e.g., index shards, 
dataset file splits, or PDF pages) and are not necessarily aligned with model input boundaries. 

TCAV (Testing with Concept Activation Vectors) is an explainable AI method that quantifies how 
much a human-defined concept (e.g. vegetation, imperviousness, crop stress) influences a 
model’s prediction by measuring the directional sensitivity of internal neural activations to that 
concept, enabling explanations in terms that are meaningful to domain experts rather than 
individual features. 

Tile is a standardized spatial subdivision of an EO image or imagery collection based on a fixed 
tiling grid. Tiles are primarily a data management and distribution unit that makes very large 
scenes easier to store, index, and process consistently. 

Token is the smallest unit of text processing by an LLM, usually a subword or symbol produced 
by a tokenizer. Tokens are the atomic elements that form sequences and chunks, and model 
limits like context size are measured in tokens. 

Tokenizer is a pre-processing component that converts raw inputs into a sequence of tokens (and 
back again). Depending on the modality, it may segment text into subwords or symbols, images 
into patches or visual codes, audio into frames or discrete units, or other signals into learned 
token forms. It defines the token vocabulary and mapping to integer IDs a model consumes, 
shaping how information is represented, how sequences are formed, and how limits like context 
size are measured.  

Vision Language Model (VLM) is a multimodal neural network trained to jointly process visual 
inputs (images or video) and text so it can relate what is seen to what is said. VLMs learn shared 
representations across vision and language, enabling tasks such as image captioning, visual 
question answering, grounding text in images, and reasoning over combined visual-text context. 

Weakly-Supervised Learning is a setting where a model is trained using imperfect, incomplete, 
or noisy labels instead of fully accurate annotations. The supervision may come from coarse 
labels (e.g., image-level tags instead of pixel labels), heuristic rules, distant supervision, or 
crowd-sourced annotations with errors. The model learns to make robust predictions despite the 
lower quality of the training signal. 
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1. Introduction 
Earth Observation (EO) is a cornerstone of global environmental monitoring, providing 
continuous, large-scale data on the Earth surface and atmosphere. The growing availability of 
high-resolution satellite imagery, complemented by airborne and ground-based sensors, enables 
valuable insights into agriculture, urbanisation, water resources, and climate change, supporting 
evidence-based environmental and disaster management (Kansakar and Hossain, 2016). The EO 
landscape is rapidly expanding, producing petabytes of heterogeneous data that demand 
advanced computational tools for e`ective analysis (Vance et al., 2024). Situated within the 
broader “big data” paradigm—defined by volume, velocity, variety, and veracity, and often termed 
Big Earth Data (Sudmanns et al., 2020)—EO increasingly depends on scalable and interpretable 
analytical approaches. 

Machine Learning (ML), and particularly Deep Learning (DL), have become central to EO data 
exploitation, enabling automated image analysis and predictive modelling for applications such 
as land cover classification and yield estimation (Paudel et al., 2021; Zhao et al., 2023). Advances 
in transformer-based foundational models have further expanded EO capabilities (Jakubik et al., 
2023). However, DL models remain complex and opaque, raising concerns about interpretability, 
reproducibility, and trust (Hassija et al., 2024; Taskin et al., 2024). Challenges including 
hallucinations, limited generalisability, and biased training data have constrained broader 
adoption (Gawlikowski et al., 2023; Reichstein et al., 2019; Zhu et al., 2017). 

To address these issues, eXplainable AI (xAI) has emerged to increase transparency and 
accountability in AI-driven EO systems (Höhl et al., 2024; Reichstein et al., 2019; Roscher et al., 
2020; Wang et al., 2023). Self-explainable AI (S-xAI) integrates interpretability directly into model 
architectures, producing intrinsic explanations—such as reasoning traces or concept 
activations—without relying on post-hoc methods (Hou et al., 2024). Such approaches are 
especially relevant in EO, where interpretability underpins trust and scientific validation in high-
impact applications like land use monitoring and climate resilience planning (Ghamisi et al., 
2024; Taskin et al., 2024). In this context, we will implement a novel self-explainable AI framework 
that combines EO embeddings and concept-based model-level explainability, inspired by Meta’s 
Large Concept Models, with output-level explainability through retrieval-augmented generation 
(RAG) and Large Language Models (LLMs). This integrated approach enhances transparency and 
contextual understanding, enabling structured reasoning and domain-grounded natural 
language explanations across various environmental EO use cases. 

This document contains the introduction of the state-of-the-art (SOTA), gaps, and the proposed 
S-xAI architecture (Section 2), an overview of the SOTA and data for the use cases (Section 3), and 
a description of the end-users and impact (Section 4).  
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2. Methodology 
This section contains a literature review (Section 2.1), gap analysis (Section 2.2), S-xAI 
architecture design and description (Section 2.3), requirements (Section 2.4), software and 
hardware considerations (Section 2.5), data and knowledge considerations (Section 2.6), and the 
ethical and privacy aspects (Section 2.7) 

2.1. Literature review 

As artificial intelligence becomes more broadly available and practically applicable, various 
domains explore the potential benefits of state-of-the-art machine learning and deep learning 
methods. Remote sensing and Earth observation domains are no exception. Large deep learning 
models are actively being developed and applied for a broad range of tasks, such as land use 
classification (Haider et al., 2025), change detection (Liu et al., 2024), flood risk prediction 
(Ruthra et al., 2025), and many others. Jakubik et al. (2023) have recently published their 
TerraMind model – a multi-modal "any-to-any" generative model, which outperforms several 
state-of-the-art models within the field of AI for EO on several relevant benchmark tests. The 
authors hope and expect the TerraMind model to be used as a foundation for numerous di`erent 
downstream tasks. Foundation models and other pre-trained models are especially important in 
the field of Earth observation, where large deep learning architectures are often necessary to 
appropriately capture and represent complex spatial and temporal relationships. An extensive 
summary and evaluation of foundation models, applicable in the domain of remote sensing and 
Earth observation has recently been published by Xiao et al. (2024). 

Despite the impressive performance of deep learning models on various benchmark tasks, the 
complexity of their decision-making process is proving to be problematic when the models are 
meant to inform high-impact decisions. For this reason, explainable AI (xAI) research has gained 
significant traction in the recent years. In fact, the intensive development in this domain has 
resulted in numerous di`erent perspectives and approaches to improving the transparency of the 
decision-making process of AI models. A comprehensive systematic overview of xAI approaches 
within the domain of remote sensing has been made by Höhl et al. (2024). 

While most of these methods provide insight about the link between model input and output, 
some argue that quantifying this link alone is not su`icient for a fully transparent and trustworthy 
decision. In their large-scale survey of explainable AI in environmental sciences, Schiller et al. 
(2025) point out that despite the recent growth of attention on explainable AI, there is a lack of 
focus on trust. The authors recommend for a more human-centric approach, where evaluating 
the user needs, gaining stakeholder trust, and defining explanations on a case-specific basis are 
of utmost importance. O’Loughlin et al. (2025) agree with the notion that post hoc input-output 
relationship explanations are not su`icient for a fully trustworthy model and advocate for 
component-level explainability. They support their recommendations with positive examples of 
physics-based modelling, where internal model calculations are grounded in well-defined 
physical processes, and discuss the potential of physics-informed AI modelling. 

Meanwhile, the concept of self-interpretable (or self-explainable) AI is gradually gaining 
prominence in the field of deep learning. Self-interpretable neural networks take explainability 
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into account by design. There are multiple ways to approach this. Ji et al. (2025) o`er a 
comprehensive survey of self-interpretable neural networks and organise the literature into five 
main categories: attribution-based, which explains predictions by highlighting influential inputs 
or features; function-based, which constraints model structure so its internal computations 
remain transparent; concept-based, which aligns decisions with human-understandable 
concepts; prototype-based, which justifies outputs by comparing them to representative 
examples; and rule-based, which expresses reasoning through explicit logical or decision rules. 
The authors also emphasise that concept-based self-interpretable models can allow direct 
human intervention, for instance by refining or correcting the concepts that guide the model’s 
predictions. 

Considering the benefits of human intervention-compatible models, it is, perhaps, unsurprising 
that there are numerous recent developments related to concept-based self-interpretable 
models. Among these developments, variations and improvements of the Concept Bottleneck 
Model (CBM) (Koh et al., 2020) are some of the most active and prominent. CBMs work by having 
the model first predict a set of human-interpretable concepts (such as attributes or intermediate 
properties) and then use those concepts, rather than raw features alone, to produce the final 
prediction, creating a “bottleneck” that makes the decision process more transparent and easier 
to inspect or adjust. 

The definition of concepts and their interactions is proving to be a significant challenge with many 
caveats. Shang et al. (2024) highlight the di`iculty of collecting an adequate and complete set of 
concepts. They propose using an optimisable vector-based approach to find missing concepts 
and linking them back to clear meanings with a novel incremental concept discovery module. 
Vandenhirtz et al. (2024) and Xu et al. (2024) propose potential improvements to the CBM with 
regards to the relationships between di`erent concepts, and how they react to human 
intervention. Researchers at Meta also acknowledge the benefits of concept-based 
interpretation (LCM Team et al., 2024). They have presented a novel, concept-based perspective 
on language modelling: large concept models. This new model architecture can represent text in 
a more e`icient, interpretable, and controllable manner, compared to classic token-based 
language models.  

2.2. Gap analysis  

Despite the described advances in deep learning and foundation models for EO, the current 
state-of-the-art approaches leave several critical gaps that limit their interpretability and 
practical trustworthiness. Most existing models lack domain-aligned concept spaces that 
connect EO embeddings to human-understandable geospatial knowledge, and their 
explanations remain primarily post hoc-focused on input-output attributions rather than 
stakeholder-relevant reasoning. Moreover, model-level and output-level explainability are rarely 
integrated, resulting in fragmented understanding of how predictions are formed. Temporal 
dynamics, essential for environmental and agricultural applications, are often ignored, as are 
mechanisms for incremental discovery of new or evolving concepts. 

The S-xAI methodology we propose in the next section addresses these gaps through a dual 
explainability architecture that combines concept-based model transparency with RAG-
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enhanced output reasoning. By aligning EO and textual embeddings into a shared embedding 
space, the approach enables interpretable, concept-level representations of EO data, while a 
Retrieval-Augmented Generation component grounds predictions and concepts in domain-
specific knowledge to produce clear, human-centric explanations. Its modular design ensures 
adaptability across use cases and provides a scalable foundation for future extensions towards 
temporally aware and scenario-driven explainable AI, thus bridging the divide between powerful 
EO prediction models and trustworthy, scientifically grounded decision support. 

2.3. Proposed S-xAI Methodology 

Methodology 

Our approach will make EO-based predictions better understandable by providing clear text-
based explanations. This will be done by: 

(i) constructing domain-specific, text-aligned representations (or embedding spaces) 
from EO data and auxiliary geospatial data, through a concept-based alignment 
model.  

(ii) Enhancing the explainability of the output of this model by a Retrieval Augmented 
Generation (RAG) based agentic AI component, to generate human-understandable 
and stakeholder-oriented explanations.  

In this way, our S-xAI architecture will leverage both model explainability and output 
explainability. In other words, with our dual approach we will both text-align the intermediary 
(embedding) stage of the model and “ground” the model predictions using domain specific 
knowledge documents (Figure 1).  

 
Figure 1: AETHER Self-Explainable EO-AI model concept 

 

The alignment model (for concept-based model explainability) in Figure 1 will be developed as 
follows. First, EO data is encoded to embeddings, either using location encoders (e.g., SatCLIP), 
EO image encoders, multimodal EO encoders, or pre-trained geospatial foundation models (e.g., 
AlphaEarth, Terramind). Secondly, text captions are encoded using text encoders (e.g., CLIP text 
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encoder) to text embeddings. EO embeddings and text embeddings can be aligned by either 
training both encoders (Radford et al., 2021), or by freezing the EO encoder and only training the 
text encoder (Zhai et al., 2022), or vice versa. The second method is more flexible, because it 
works with fixed EO encoders such as large geospatial foundation models, and requires less 
training data (Zhai et al., 2022), but is constrained by the richness (information content) of the 
pre-existing EO embeddings. We will try this method first, because fewer data points will be 
needed, and consider training both encoders if performance is not su`icient compared to 
benchmarks. Next, concepts will be queried using open-vocabulary tasks (i.e., in natural 
language, not limited to a fixed set of terms or phrases) in the text-aligned EO embedding space, 
and we will quantify the similarity of embeddings to concept embeddings to quantify how well 
these concepts are present in the EO data. 

The reasoning model (for concept-based output explainability) will be developed as follows: we 
will train shallow classifier or regression heads on the EO embedding space (e.g., a Generalized 
Linear Model or Random Forest) to predict the target variables. We will try predicting using the 
embeddings directly and using the similarities with queried concepts. At the same time, we will 
employ Retrieval Augmented Generation (RAG) to link the task (using the relevant concepts) to 
relevant parts of domain-relevant knowledge documents and then prompt an LLM-based 
workflow to explain the model predictions given the concept activations, predictions, and 
extracted related knowledge. Figure 2 provides a more detailed illustration of the architecture. 

 
Figure 2: Illustration of the modular architecture of the model, where each component can be developed 

independently. 

 

RAG module 

The RAG approach will be tailored to our system that aligns EO and text embeddings, performs 
open-vocabulary retrieval, and then generates user-oriented explanations. When tile concepts 
are produced from auxiliary geospatial datasets and rules on top of e.g. an EO foundation model, 
retrieval can be powerful, but the resulting concepts are weak/synthetic labels. They inherit 
assumptions and potential drift from the source datasets and rules. The RAG component 
therefore will serve two core functions: semantic grounding (clarifying what a retrieved concept 
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means, consistently and in user language) and transparent justification (explaining why the 
concept could have been retrieved and how reliable that association is). 

The proposed corpus mix (see Table 1) reflects those two functions. A strong backbone of 
authoritative definitions, standards, and ontologies provides stable meanings, synonyms, and 
hierarchical relations so open-vocabulary queries map to clear, evergreen concepts (ideas or 
terms whose meaning stays stable over time and across contexts) rather than rule-specific 
jargon. EO sensor/product and measurement guides will ground explanations in what EO can 
observe, enabling “why” narratives tied to physical signals, scales, and acquisition constraints. 
To address weak labeling directly, a dedicated slice of annotation rulebooks and provenance 
notes documents data lineage, thresholds, spatial/temporal bu`ers, and known failure modes, 
so the generator LLM can state provenance and qualify uncertainty instead of guessing. 
Complementing this, confounder/validation references shall supply default caveats and error 
modes that help prevent overconfident explanations. 

Finally, the corpus must include short concept explainers, application playbooks, and contextual 
briefs to keep outputs useful and audience appropriate. Concept cards enforce consistency and 
readability for frequent terms; playbooks and context sources enable “so-what” guidance; and 
case-based or review material anchors responses in realistic magnitudes and common patterns.  

Good quality of the documents is critical for RAG to work well. Therefore, a scoring rubric will be 
provided by WP200 to WP300 to allow easy selection of usable information. This rubric should 
score on aspects such as: Relevance and scope, authority and stability, concept grounding 
usefulness, EO explainability value, weak-label provenance value, user-oriented generation 
value, chunkability and retrievability, and metadata findability. Scores in di`erent categories can 
be weighted to calculate a final value, that should result in a keep, park, or reject decision for 
each document. 

 

Table 1: RAG corpus composition overview. Corpus share percentages represent initial values and can be 
adjusted based on evaluation feedback. 

Document Type Contribution to RAG Approximate 
corpus share (%) 

Authoritative definitions, 
standards and glossaries 

Canonical meanings for open-vocab concepts; 
disambiguation; guards against rule drift 

25% 

Domain taxonomies/ontologies Structured relationships amongst concepts 
(broader/narrower/related); improves clustering and 
explanations 

10% 

EO sensor/product handbooks 
and measurement guides 

“How EO sees X” and what signals mean; supports “why 
retrieved?” 

15% 

Method/application reviews Consensus workflows and typical assumptions; good for 
“how reliable / how done?” 

10% 

Uncertainty, validation and 
confounder references 

Disclaimers for weak labels; explains failure modes 10% 
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Document Type Contribution to RAG Approximate 
corpus share (%) 

Annotation rulebooks and 
provenance documents 

Allows RAG to explain synthetic labels used and their 
limits 

8% 

User-oriented concept cards 
and explainers 

Short, concise, friendly answers aligned to audience 15% 

Local/sector/context briefs “So-what” relevance; turns concepts into actionable 
context 

7% 

 

Overall, the chosen mix makes the RAG a trust and calibration component: it converts open-
vocabulary retrieval into explanations that are semantically correct, physically grounded, 
provenance-aware, and genuinely usable for decision-making. 

 

Temporal eaects 

The proposed S-xAI methodology aims to develop concept-based explainable models that 
operate on embeddings derived from EO data. In its initial version, the methodology focuses on 
predicting and explaining target variables from single “state” representations, each 
corresponding to a specific timestamp, allowing for transparent interpretation of relationships 
between learned EO concepts and model outputs. While this approach provides a clear 
framework for explainability, it is recognised that many real-world applications, specifically in the 
environmental domains, inherently depend on temporal dynamics. Therefore, a potential future 
extension of the methodology will consider incorporating time-series embeddings, enabling the 
model to capture temporal e`ects and seasonal trends across, e.g., the crop growing period or 
longer environmental processes. The use of geospatial foundation models that already encode 
temporal information, e.g., Presto and AlphaEarth Foundations (Brown et al., 2025; Tseng et al., 
2023), is envisaged as a promising direction. Additional extensions, such as the generation of 
counterfactual or scenario-based concept descriptions to support “what-if” analyses, are 
identified as valuable follow-up studies. Nevertheless, the initial focus is on achieving concept-
level explainability for single-state predictions, while paving the way toward temporally aware and 
scenario-driven S-xAI approaches. 

 

Unified Architecture 

The AI architecture and processing workflow provide a unified backbone for all three the EO-
based use cases of the project. This backbone will be tailored for each use case based on their 
goals, data, and concepts. The design is modular and extensible, comprising generic 
components for data ingestion, EO data encoding, text encoding, concept extraction, 
downstream task prediction, and RAG-enhanced explanation (see Figure 3). This modularity 
enables flexible localisation, and adaption to new domains or datasets by varying input data 
source, trained models, and knowledge corpora, while maintaining a consistent and transparent 
explainability framework across applications. 
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Figure 3: Initial unified Self-Explainable EO-AI architecture for the AETHER project 

 

2.4. Requirements  

As described in Section 2.3, the S-xAI architecture will be designed as a modular system, 
leveraging EO embedding models, a concept-based alignment module, and an advanced RAG 
component using agentic AI. While this design enhances the explainability, transparency, 
reusability, and scalability across the use cases, it also introduces specific constraints on model 
design and data processing: 

• Embedding model dependency: The semantic representation of EO data relies on a 
fixed embedding space, which constrains the range of domain-specific fine-tuning 
applicable per use case. 

• Explainability module integration: The requirement for interpretability restricts the use 
of certain black-box models that might be more high-performing. 

• RAG framework consistency: All use cases must operate with a shared RAG pipeline 
architecture, limiting the diversity of data access and context retrieval mechanisms. 

• Modularity enforcement: Each component must remain decoupled, a`ecting the ability 
to optimise end-to-end performance for individual use cases. 

In the following subsections, the software and hardware requirements, including computational 
and storage, as well as the data and knowledge requirements for model development and use in 
the proof of concepts for the use cases, will be further described. 
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2.5. Software & Hardware 

System maturity is progressed through four successive (approximately two-month) prototype 
iterations (proto-0 to proto-3), with proto-1 defining the S-xAI methodology hando` (WP200 to 
WP500), proto-2 supporting intermediate review (IR) feedback, and proto-3 achieving TRL-5 at 
final review (FR). 

 

Table 2: Software and Hardware Requirements 

Req ID Requirement Metric Target Measurement 

SW-01 All AI model and training 
components shall be implemented 
in Python using open-source 
packages, validated by PROTO-1. 
Depends on DATA-EO-01, DATA-
AUX-01/02, DATA-ITER-01. 

% model code in 
Python 

100% Repo language 
scan + 
environment file 
review 

SW-02 The system shall integrate at least 
one external LLM API provider for 
LLM functionality by PROTO-2. 
Depends on: KNOW-01/02/03, 
PROMPT-01. 

# LLM APIs 
integrated 

>= 1 Integration test 
with live API calls 

SW-03  The RAG/LLM orchestration shall 
be implemented using a standard 
OSS framework (LangChain, 
LangChain4J, or Semantic Kernel) 
by PROTO-0. Depends on: KNOW-
01/02/03, PROMPT-01, DATA-AUX-
02. 

Framework usage 1 selected 
framework in use 

Codebase 
inspection 

SW-04 The system shall implement 
operational capabilities (logging, 
traceability, authentication) using 
standard libraries by PROTO-2. 
Depends on: KNOW-02/03, 
PROMPT-01. 

Presence of ops 
modules 

All 3 present Checklist + 
integration tests 

OUT-01 Model predictions shall be 
exportable to at least one standard 
GIS-readable geospatial format by 
PROTO-2. Depends on: DATA-EO-
03, DATA-ITER-01. 

# supported GIS 
formats 

>= 1 Export + load test 
in QGIS 

OUT-02 Explanations shall be generated in 
plain text or Markdown and be 
exportable/copyable from the GUI 
by PROTO-2. Depends on: KNOW-
03, PROMPT-01. 

Explanation format 
support 

Text + Markdown UI acceptance test 

GUI-01 End-user POCs shall be developed 
in C#/.NET with optional Semantic 
Kernel integration by PROTO-2. 
Depends on: PROMPT-01, KNOW-
01/03. 

Runtime / stack 
compliance 

100% Build pipeline + 
code review 
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Req ID Requirement Metric Target Measurement 

GUI-02 The GUI shall be a modular web 
application with separate frontend 
and backend API by PROTO-2. 
Depends on: DATA-EO-03. 

Architecture 
compliance 

Frontend/backend 
separation 
implemented 

Repo structure + 
deployment review 

GUI-03 The backend API shall be usable 
both by the GUI and by external 
clients/automated workflows by 
PROTO-2. Depends on: DATA-EO-
02, KNOW-01/02. 

External API 
usability 

>= 3 external 
endpoints 
documented and 
tested 

Postman / Swagger 
tests 

API-01 Data and model results shall be 
exchanged via Web services or 
WebSockets using JSON and 
GeoJSON by PROTO-2. Depends 
on: DATA-AUX-01, OUT-01. 

Protocol + format 
compliance 

JSON + GeoJSON 
supported 

Integration tests 

DEV-01 Backend services and GUI shall be 
containerized with Docker and 
deployable via Kubernetes on 
NILU’s cluster by PROTO-2. 
Depends on: KNOW-02/03, DATA-
EO-02. 

K8S deployment 
success 

100% success on 
NILU cluster 

CI deploy + smoke 
tests 

OPS-01 All code shall be publicly hosted 
on GitHub with CI/CD enabling 
parallel partner development by 
PROTO-0. Depends on: DATA-EO-
01 / KNOW-02, PROMPT-01. 

CI/CD availability CI + CD pipelines 
available 

Check GitHub 
Actions / pipelines 

 

The AI model(s) and all model training-related components will be developed in Python, using 
open-source packages. The machine learning components will be implemented in PyTorch. For 
LLMs we will use existing LLM API services (e.g., Mistral AI, EuroLLM, OpenAI, Anthropic). The RAG 
component and related operational functionality of the POCs will be developed using standard 
frameworks such as LangChain (Python), LangChain4J (Java), or Microsoft’s Semantic Kernel 
(supporting multiple programming languages), leveraging standard ecosystem components (e.g. 
JVM or CLR based) and libraries for logging, traceability, user authentication, etc. 

The AI model(s) will partly use pre-trained model components and train new model components 
as well. For this, we will use the Wageningen University & Research HPC infrastructure Anunna1. 
As such, data will be stored on local data servers that can be accessed from the HPC. In case 
more capacity is needed we will temporarily use Microsoft Azure based cloud resources. 

Output predictions from the AI model will be exported to geospatial data formats so they can be 
loaded into GIS software by end-users, if required (depending on the GUI). Explanations will be 
generated in plain text or Markdown format, and simple copy functionality will be provided in the 
GUI. The RAG/LLM module potentially can also be used to drive GUI functionality that supports 
or enhances open vocabulary tasks that allow an end-user to access the latent embedding space 

 
1 https://wiki.anunna.wur.nl/  
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using natural language queries (NLQ), i.e. to interact with the explanations and explore the 
reasons and concepts, e.g., to find areas or time periods with similar or opposite conditions. 
Integrating such functionality could be part of the proof-of-concept development, driven by 
feedback from our end-user evaluations. 

The end-user application(s) (i.e., the POCs) will be developed using C# and .NET with possible 
integration of Microsoft’s Semantic Kernel for AI-driven functionalities such as interaction with 
LLMs. The Graphical User Interface (GUI) will be designed as a modular web application, 
separating frontend and backend API. This makes sure that the service can be used by the GUI 
but also by external applications or in automated workflows as an AI agent. The GUI will connect 
to multiple APIs to combine data, e.g., to display geospatial data combined with explanations 
and background information. Data and model results will be exchanged through standard Web 
services or WebSocket protocols, using JSON and GeoJSON for structured communication. The 
backend services and GUI components will be containerized using Docker/Kubernetes within 
NILU’s cluster during development and evaluation, for the duration of the project. 

All code will be developed publicly on GitHub with appropriate CI/CD infrastructure to allow 
parallel development from di`erent partners of the project. 

2.6. EO Data & Knowledge 
Table 3: EO Data and Knowledge Requirements 

Req ID Requirement Metric Target Measurement 

DATA-
EO-01 

All EO and auxiliary datasets used in 
the project shall be publicly available 
(openly licensed) for all use cases, 
validate by PROTO-1. 

Share of datasets 
with open/public 
licence 

100% Dataset inventory 
review + license 
verification 
checklist 

DATA-
EO-02 

EO input data shall be sourced 
(according to the selected EO 
encoder specification) achieving 
complete AOI coverage by PROTO-1. 

EO data coverage of 
AOIs 

>= 95% spatial 
coverage per 
UC AOI 

coverage report 
against AOI / time 
windows 

DATA-
EO-03 

After the EO encoder is fixed, the 
project shall deliver end-user 
guidelines for acquiring required EO 
data (when rasters are needed) by 
PROTO-0. 

Guideline 
completeness 

1 guideline 
package per 
UC where EO 
rasters 
required 

Documentation 
review + UC lead 
sign-of 

DATA-
AUX-01 

For each UC auxiliary geospatial data 
will be provided as a locations x 
features table (rows = locations, 
columns = numerical features), 
including labelled and unlabelled 
locations, by PROTO-0. 

Auxiliary table 
availability per UC 

1 table per UC Data handover 
check + schema 
validation 

DATA-
AUX-02 

The data loader shall support on-the-
fly selection of auxiliary feature 
columns for caption generation using 
predefined rules, implemented by 
PROTO-1. 

Dynamic feature 
selection success 
rate 

>= 99% runs 
without 
selection 
errors 

Automated 
caption-
generation runs 
over auxiliary 
tables 
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Req ID Requirement Metric Target Measurement 

KNOW-
01 

UC leads shall provide a curated 
concept list for retrieval/explanation 
by PROTO-0, updated iteratively 
thereafter. 

Concepts per UC 10-30 
concepts 

Concept registry 
review + count per 
UC 

KNOW-
02 

UC leads shall provide domain-
relevant knowledge documents per 
UC for RAG, with first full set by 
PROTO-0 and iterative curation with 
WP200 thereafter. 

Knowledge 
documents per UC 

>= 50 Document 
inventory + de-
duplication report 

KNOW-
03 

Knowledge documents shall cover all 
required explanation languages, be 
machine-readable (plain text / 
Markdown preferred) and be freely 
accessible (no DRM / password / 
encryption), validated by PROTO-0. 

Language coverage; 
machine-readability; 
access constraints 

100% language 
coverage; >= 
95% machine-
readable; 0 
restricted-
access docs 

Format scan + 
access check _ 
language 
metadata audit 

PROMPT-
01 

Prompts for explanation tuning, 
evaluation datasets, and guardrails 
shall be co-developed with UC leads 
and version-controlled, with an initial 
validated prompt set per UC by 
PROTO-1. 

Prompt set 
completeness 

>= 1 
explanation 
prompt + 1 
evaluation / 
guardrail 
prompt per UC 

Prompt repository 
review + UC lead 
approval 

DATA-
ITER-01 

Data hyperparameters (e.g. EO patch 
size, pretraining sample counts, 
target sample counts, number of 
concepts, labelling rules) shall be 
defined and updated iteratively 
based on model performance, with 
documented finalised values before 
each release (PROTO-1 and later). 

Hyperparameter 
documentation 
coverage 

100% of 
releases have 
documented 
data settings 

Release checklist 
+ config snapshot 
stored per version 

 

The project will be based on publicly available data for all use cases, thus limiting issues related 
to licensing, data protection regulations, or exposure of personal and sensitive information. 

EO data will be dependent on the EO encoder. For example, for location encoders or pre-
computed geospatial foundation models we will only require latitude/longitude coordinates, 
while for other encoders we will require EO input data (e.g., Sentinel-2). Therefore, EO data will 
be sourced by WP200 (who develop the EO encoders) rather than the UC owners in WP300. 
However, after the model is finished and the EO encoder is fixed, we will include guidelines for 
end-users how to acquire relevant EO data, if applicable.  

Other auxiliary geospatial data (to generate text captions with) are UC specific and will be 
provided by UC leads. They will be provided in the form of a table, where rows list di`erent 
locations, and columns list di`erent numerical features (e.g., mean temperature). These data can 
be provided both for locations with target numerical values (e.g., crop yield or urban temperature) 
and without. In the latter case, these data can be used for contrastive learning. This auxiliary data 
can be extensive, because the relevant data columns will be selected later, during on-the-fly 
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generation of captions using pre-established rules in the data loader. Auxiliary data will be 
sourced from publicly available datasets. 

UC leads will then list the concepts of interest (approx. 10-30) which will be queried, as well as 
the knowledge documents (100 or more, domain and use case goal relevant, e.g. selected from 
scientific or grey literature) for the RAG component. These data sets will be curated in an iterative 
process as the model continues to develop, in collaboration with WP200. Knowledge documents 
need to be provided in all languages in which explanations need to be generated. Documents 
preferably are in plain text or Markdown format or at least need to be in a machine-readable 
format. Besides that, they need to be freely accessible, without copy protection, passwords, or 
encryption. To tune the explanations to specific end-user needs, prompts will be developed in 
collaboration with the use cases. Similar for any other prompts that might be required, e.g., to be 
used as evaluation datasets or guardrails to prevent undesired outputs. 

Other specific data requirements, such as patch size, number of pre-training data points, number 
of target data points, number of concepts, etc., will be established iteratively as the model, 
architecture, and workflows are developed, guided by model performance and data need 
priorities.  

2.7. Ethical & Privacy Aspects 

The AETHER project adheres to the highest standards of ethical conduct and data protection, 
ensuring that the design and deployment of self-explainable Earth Observation (S-xAI) models 
remain transparent, responsible, and compliant with European and international regulations. All 
activities will align with the EU General Data Protection Regulation (GDPR), the EU AI Act, and the 
European Code of Conduct for Research Integrity (ALLEA - All European Academies, 2023; 
European Parliament and Council of the European Union, 2024, 2016). 

AETHER’s ethical framework addresses three core dimensions: 

• Data ethics and privacy: The project uses only publicly available or properly licensed 
Earth Observation and ancillary datasets. No personally identifiable information (PII) is 
collected or processed. Where socio-economic or location-specific indicators are used 
(e.g., in the Urban Heat Island case), data are anonymised and aggregated to ensure 
individuals and communities cannot be re-identified. 

• Algorithmic transparency and accountability: The S-xAI architecture incorporates 
explainability by design, allowing model reasoning and outputs to be interpretable, 
traceable, and auditable. This approach supports fairness and mitigates risks of bias in 
training data, ensuring that automated insights can be verified by domain experts and 
stakeholders. 

• Responsible use and societal impact: AETHER promotes equal access to AI-enabled 
Earth Observation insights and safeguards against misuse. Human oversight remains a 
key requirement in all decision-support scenarios, especially when outcomes could 
a`ect communities or environmental management. The integration of retrieval-
augmented generation and large language models follows strict guidelines for factual 
grounding, security, and bias control. 
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Table 4: Ethical and Privacy Requirements 

Req ID Requirement Metric Target Measurement 

ETH-01 All project activities shall comply 
with GDPR, the EU AI Act, and the 
ALLEA European Code of Conduct 
for Research Integrity, including a 
strict prohibition on the collection, 
storage, or processing of any 
personally identifiable information 
(PII). Continuously enforced from 
PROTO-0 onward. 

Compliance audit 
pass rate, PII 
detection incidents 

100% at each 
review; 0 PII 
incidents 

Formal compliance 
checklist + internal 
audit sign-op; 
automated PII 
scanning of all data 
assets + periodic 
manual spot checks. 

ETH-02 Only publicly available EO and 
ancillary datasets shall be used, 
validated by PROTO-0 and 
rechecked at every major release. 

Share of datasets with 
valid public / license 
proof 

100% Dataset inventory + 
license / provenance 
verification 

ETH-03 The system shall include bias / 
fairness evaluation over training 
and inference data, with mitigation 
actions documented, first 
complete cycle by PROTO-1 and 
repeated each release. 

Bias evaluation 
completion rate; 
mitigations logged 

100% cycles 
completed; >= 
1 mitigation if 
bias found 

Bias test suite run + 
mitigation log in DMP 
/ repo 

ETH-04 Ethical monitoring shall be 
continuous throughout the project, 
with ethical risks and mitigation 
measures documented in the Data 
Management Plan (DMP) starting 
from PROTO-1 and updated 
periodically. An internal ethics lead 
(NILU) shall formally review and 
validate these risks and mitigations 
at each major project milestone. 

DMP update cadence; 
Ethics risk register 
completeness; Ethics 
lead review 
completeness 

Periodic DMP 
updates from 
PROTO-1 
onward; 100% 
of identified 
ethical risks 
tracked and 
mitigated; 
100% of major 
milestones 
formally 
reviewed 

DMP version history 
and documented 
change logs; Ethics 
risk register review; 
Signed ethics review 
memos by the 
internal ethics lead at 
each milestone 

ETH-05 All project outputs (including data, 
models, and documentation) shall 
comply with FAIR principles and  
Responsible AI requirements. 
Assessment methods shall be 
applied to all use cases, with the 
first full assessment completed by 
PROTO-2, and repeated for Final 
release. 

FAIR score; % of FAIR 
gaps addressed; 
Responsible AI 
assessment coverage 

FAIR score >= 
agreed project 
threshold; >= 
80% of FAIR 
gaps 
addressed by 
Final; 100% of 
UCs assessed 
by Final 

FAIR self-assessment 
tool results; FAIR and 
Responsible AI 
action-tracking log; 
Completed FAIR and 
Responsible AI 
assessment 
templates with UC 
lead sign-op 

 

Ethical monitoring will be an ongoing process throughout the project lifecycle. Partners will 
document ethical risks and mitigation measures in data management plans, supported by an 
internal ethics lead contributed by NILU as part of the consortium team, and alignment with ESA’s 
data governance requirements. Outputs will comply with FAIR (Findable, Accessible, 
Interoperable, Reusable) principles (Wilkinson et al., 2016) and Responsible AI best practices, 
ensuring transparency, reproducibility, and trust across all use cases. As this an AI driven project, 
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a special focus will be on AI ethics and a tailored assessment and validation1 developed during 
the EU Horizon project FAIRiCUBE2 will be applied. 

3. Use Cases 
The overarching theme of this project is “Reliable & fast monitoring in unpredictable times”, which 
reflects some of the main challenges of our times. We have selected three use cases:  

1. Mapping of biodiversity and its loss due to climate change. 
2. Crop yield prediction and rapid assessment of the e`ect of floods, droughts, and fires. 
3. Detection of urban heat islands and their evolution due to global warming. 

These use cases collectively span natural, agricultural, and urban ecosystems, ensuring the 
broad applicability and relevance of the S-xAI framework. They address high-priority policy 
domains aligned with the EU Green Deal, Farm to Fork Strategy, and Nature Restoration Law, 
while providing multi-scale and multi-domain validation of AI interpretability methods across 
diverse geographies, from temperate Europe to tropical Africa and Latin America. Together, they 
deliver strong scientific and societal impact, advancing biodiversity conservation, food security, 
and urban climate resilience. Moreover, they leverage rich and openly available datasets, 
including SatBird, S2BMS, Sentinel-1/2 archives, Copernicus Land Monitoring Service products, 
and urban climate and socio-economic databases, which support reproducibility, scalability, 
and FAIR data compliance, thereby enhancing the scientific robustness and long-term utility of 
the project outcomes. 

In the following, we will provide a motivation for each use case, along with an overview of the 
available experience, models, and datasets. To structure the description and documentation we 
will make use of AI canvases, similar in concept to business canvases. An AI Canvas is a 
structured framework designed to describe and analyse how artificial intelligence can address a 
specific problem or opportunity. It helps teams clarify a use case by systematically capturing key 
elements such as the objective, data sources, model approach, stakeholders, success metrics, 
risks, and ethical considerations. In this project, the AI canvas will support the consolidation of 
multiple use cases by providing a common structure for comparing needs, data availability, and 
analytical workflows. This enables alignment within the project, identification of shared 
components (e.g., datasets, models, or components and infrastructure for the prototypes), and 
prioritisation of e`orts. 

This work directly aligns with the European Space Agency’s (ESA) strategic objectives for xAI by 
embedding transparent, self-explainable AI methodologies. Furthermore, it will demonstrate the 
potential for scalability to address broader climate-related hazards, such as floods and storms, and will 
promote operational readiness by delivering transparent and actionable tools designed to strengthen 
community resilience. The project will rigorously adhere to FAIR data principles, ensuring that all 

 
1 https://hub.fairicube.eu/validation-ai-ethics.html 
2 https://fairicube.eu 



 

 

AETHER_RB_V1.docx  Page: 26/40 

 

spatially explicit results and models are made available to urban planners, decision-makers, and local 
actors to foster widespread adoption and impact (Kumar et al., 2024; Wilkinson et al., 2016). 

Following the agreements with ESA, the use case on urban heat islands will receive highest priority 
during the project. Due to the higher maturity level of the biodiversity dataset, the S-xAI development will 
begin with that use case instead. If either the biodiversity or crop yield use case shows significant 
underperformance compared to the xAI SOTA in the related domain (considering a possible prediction 
accuracy vs explainability trade-oX), it may be dropped from further development into a proof-of-
concept. 

3.1. Use case 1: Biodiversity  

Biodiversity monitoring is crucial for understanding the health of ecosystems, detecting changes 
over time, and guiding conservation e`orts to maintain the balance of natural systems. Climate 
change disrupts species distributions, e.g., by altering habitats and climatic conditions, and 
increases the frequency of extreme weather events, all of which can push vulnerable species 
toward (local) extinction (Bellard et al., 2012). 

Species distribution models (SDMs) use geospatial data to predict where species occur and are 
vital for conservation planning, but traditional models rely on manually selected covariates, e.g., 
land cover, distance from road, and mean temperature, limiting their capacity to capture complex 
ecological patterns (Beery et al., 2021; Elith and Leathwick, 2009). Recent deep learning 
approaches improve predictive power by using raw Earth Observation (EO) data (Cole et al., 2023; 
Teng et al., 2023; van der Plas et al., 2025b, 2025a), but often lack transparency, making it di`icult 
to interpret ecological relevance (Ryo et al., 2021). To address this, post hoc explainable AI 
methods have been used to improve the transparency of deep SDMs, for example by computing 
LIME and Shapley values (Ryo et al., 2021; Zbinden et al., 2025). 

 Here, we will go beyond post hoc explainable AI methods and develop a self-explainable AI EO 
model to predict species distributions directly from raw EO data, while explaining what EO 
features were used to make these predictions, based on documented habitat preferences of the 
species. See Table 5 for the AI canvas of this use case. This will allow the model to identify from 
EO data complex concepts not easily defined by hand, such as habitat fragmentation, density of 
vegetation, habitat mosaics, thus enabling the monitoring of these biodiversity features at scale.  

To that end, we will use two machine learning ready, public data sets of Sentinel-2 EO data 
coupled with species observations: SatBird and S2BMS. SatBird is a data set of bird observations 
from EBird in the USA and Kenya (Teng et al., 2023), and S2BMS is a data set of butterfly 
observations from UKBMS in the UK (van der Plas et al., 2025b). As auxiliary geospatial data we 
will use public geographic, bioclimatic, land cover and human footprint data. We will compare 
our model performance against the existing benchmarks for these data sets, and ask the model 
to explain, per species, what EO data features drove the predictions. We will evaluate these 
explanations both quantitatively, using standard benchmark metrics, and qualitatively, by 
consulting experts to judge the explanation quality and validity. 
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Table 5: AI Canvas for the biodiversity monitoring use case 

Use case objective 
Predict multi-species species encounter likelihood / 
habitat suitability and deliver self-explainable 
biodiversity indicators at hotspot scale.  
 
Success: Strong SDM generalisation across regions + 
explanations that are faithful, stable, and ecologically 
plausible. 

Data 
1) EO: depends on EO encoder.  
2) Ancillary: S2BMS (Butterfly observations (UK)), 
SatBird (bird observations (USA), 
geography/topography, bioclimatic, land-use, human 
footprint 
3) Captioning rules: TBD, based on auxiliary data. 
4) Corpus: Biodiversity reports; ecological literature, 
EO specs, concept cards. 

Modelling approach 
Shared EO foundation encoder (EO embeddings per 
tile); text/semantic encoder (embeddings of 
habitat/species terms). EO – Semantic alignment 
trained with weak EO-caption pairs (from ancillary data 
and rules) to form a joint EO-semantic space. A light 
SDM head predicts species encounter likelihood from 
EO embeddings. Explainability via open-vocabulary 
probing of the aligned space (ranked ecological drivers 
+ similarity maps), supported by EO attributions and 
RAG-LLM narratives grounded in ecology corpus. 

Initial concepts 
land-cover type; greenness/NDVI; canopy density; 
wetland index; open water; cropland intensity; 
grassland fraction; shrub land; bare soil/rock; urban / 
impervious; elevation; slope/aspect; distance-to-water; 
fragmentation/edge density; burn/scar; phenology 
phase; drought/heat/rain anomalies; human footprint; 
protected status.  

Study regions 
UK: Butterflies 
USA: Birds 

Outputs 
Species encounter probabilities per location, including 
text explanations. Can be aggregated to species 
richness.  

Current xAI SOTA 
MaskSDM (attribution-based explainability) 

Current xAI benchmarks 
shapley values, AUC. Benchmarks not relevant as other 
data was used. 

Value proposition 
Scalable biodiversity monitoring with transparent 
habitat / pressure drivers, supporting conservation 
action and policy trust. 

Stakeholders 
Conservation agencies/NP managers; biodiversity 
NGOs / policy units, ecological researchers, citizen-
science platforms. 

3.2. Use case 2: Crop Yield 

Crop yield prediction and rapid damage assessment is vital for ensuring food security, optimizing 
resource management, and supporting farmers' decision-making processes. In conventional 
monocultural agriculture, yields are highly sensitive to changes in climate conditions, including 
altered rainfall patterns, rising temperatures, and more frequent extreme weather events (Lobell 
et al., 2011). In contrast, agroforestry systems—which integrate crops, trees, and sometimes 
pastures—o`er greater resilience (Ngaba et al., 2024; Santos et al., 2019) but can still su`er yield 
losses from natural disasters like droughts, floods, storms, and wildfires, which disrupt 
ecosystem services and reduce landscape stability, and potentially lead to significant carbon 
emissions and crop yield loss. 

Mapping and predicting crop yield in croplands and agroforestry is a challenging task 
(Muruganantham et al., 2022), primarily due to the temporal, spatial, structural, phenological, 
and species diversity of the vegetation species, as well as due to the ever-increasing 
unpredictability of the weather events. Long time series of Sentinel-1 and Sentinel-2 data 
combined with machine learning o`er promising tools for capturing interactions between tree 
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cover, crop yield, and environmental factors in agroforestry (Oliveira et al., 2025) as well as 
conventional croplands (Paudel et al., 2022, 2021). Studying this within our project will support 
the development of scalable, cost-e`ective monitoring frameworks essential for managing food 
security and land use in climate-vulnerable regions like the Sudano-Sahel (Bayala et al., 2014; 
Burke and Lobell, 2017). 

The AI canvas for this use case is shown in Table 6. We will leverage a rich collection of crop yield 
datasets over 50,000 crop-cut observations from GROW Africa (Geyman et al., 2025) and One 
Acre Fund1, covering seven African countries (Kenya, Rwanda, Ethiopia, Malawi, Burundi, 
Tanzania, and Zambia) between 2012 and 2021. These datasets include detailed crop 
performance records for cereals such as maize, sorghum, millet, rice, wheat, and te`, as well as 
legumes and root crops like beans, groundnuts, and sweet potatoes. Data attributes include 
fresh and dry weights, yield (tons/ha), harvest dates, and field-level classifications. In addition, 
over 10,000 tree-level cocoa yield records from CocoaSoils2 and parkland agroforestry data from 
Burkina Faso (Oliveira et al., 2025) will enrich the analysis. Complementary benchmark datasets, 
including CY Bench (a global reference dataset for sub-national crop yield forecasting) and 
FLAME (Field-Level Asset Mapping Dataset for England’s Agricultural Sector), will support cross-
regional validation (Paudel et al., 2025; Sheikh et al., 2025). High-precision georeferenced data 
(≤0.03 km) and lower-precision samples (≤5 km) provide broad spatial coverage, facilitating 
scalable model calibration across diverse agro-ecological zones and farming systems.  

Together, these datasets form one of the most comprehensive multi-country resources for 
developing and validating self-explainable AI models for crop yield prediction and agroecosystem 
monitoring.  The S-xAI architecture on the black box models described in the literature (Oliveira 
et al., 2025; Paudel et al., 2022, 2021) will be used to generate predictions of crop yield using 
available  in-season EO data based on the crop calendar and well-known yield-related concepts, 
as well as predict crop yield for the next season subject to additional information on 
meteorological conditions and natural disasters. his will allow us to study the e`ect of climate 
change and natural disasters on crop yield, e.g., by altering the precipitation to simulate dryer 
and wetter seasons and simulating flood and drought events. 

 

Table 6: AI Canvas for the crop yield prediction use case 

Use case objective 
Provide accurate, scalable, and explainable crop 
yield estimation models integrating EO, ancillary 
biophysical layers, and contextual datasets. Deliver 
actionable insights for policy, climate adaptation, 
and farm-level decision-making.  

Data 
1) EO: Sentinel-1, Sentinel-2  
2) Ancillary: Biophysical (soils, topography), climate 
(temperature, rainfall), environmental quality, 
socio-economic and built-up layers 
3) Captioning rules: TBD, based on auxiliary data.  
4) Corpus: Agronomic standards, EO documentation, crop 
and yield modelling literature, validation guidelines, 
concept cards, local context briefs. 

Modelling approach 
The model uses a shared EO encoder for 

Initial concepts 
Key layers include land-cover type, greenness/NDVI, 

 
1 https://oneacrefund.org/  
2 https://cocoasoils.org/  
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spatiotemporal embeddings and a semantic 
encoder for crop, soil, and climate concepts. 
Weakly supervised EO-caption alignment creates a 
joint concept space, with a lightweight head 
predicting crop yield. Explainability is provided via 
ranked agronomic/biophysical terms, EO attribution 
maps, and RAG LLM narratives, with provenance 
and uncertainty calibration. 

canopy density, and drought/heat/rainfall anomalies, 
which can be integrated with additional biophysical, 
climate, and socio-economic data  

Study regions 
West Africa (Burkina Faso) 
East Africa (Kenya, Rwanda, Tanzania, Zambia, 
Malawi & Burundi)  

Outputs 
Crop-specific and aggregated yield maps, hotspot change 
alerts highlighting significant yield gains or losses, 
explanatory products such as ranked agronomic and 
biophysical concepts, spatial similarity layers and 
attribution maps, and RAG-grounded textual rationales 
that describe key drivers of yield patterns with provenance 
and uncertainty. 

Current xAI SOTA 
Multimodal EO-weather-soil features; feature 
attribution (SHAP/IG) for climate, soil and 
management drivers; temporal attention and 
growth-stage attribution; counterfactual what-if 
analysis on rainfall, temperature and inputs; spatial 
saliency and prototype fields for high- and low-yield 
patterns. 

Current xAI benchmarks 
Faithfulness via deletion/insertion AUC (AUC approx. 0.90), 
localisation accuracy of attribution maps against field-
level proxies (mIoU up to approx. 0.5), stability of spatial 
and temporal attributions across seasons and domains, 
counterfactual validity through plausible and minimal 
perturbations (e.g. weather and inputs), and human 
alignment via agronomic expert usefulness assessments. 

Value proposition 
 A scalable and explainable crop-yield intelligence 
system that delivers transparent, data-driven 
insights on agronomic and environmental drivers, 
strengthening decision-making for climate 
adaptation, food security, and policy planning.  

Stakeholders 
 Senior researchers in Burkina Faso universities; 
Smallholder farmer(s) in Burkina Faso parklands; NGOs  

 

3.1. Use case 3: Urban Heat Islands 

Urban areas are characterised by significantly higher temperatures compared to their surrounding rural 
regions, a phenomenon driven by dense infrastructure, limited green cover, greater absorption and 
delayed release of heat by anthropogenic structures (Deilami et al., 2018). These Urban Heat Islands 
(UHIs) exacerbate the vulnerability of urban socio-ecological systems to climate change, particularly as 
heat waves intensify and high-temperature days become more frequent, posing critical threats to public 
health, infrastructure, and ecosystems (Tehrani et al., 2024). The consequences are severe, including 
increased cooling energy demands, increased air pollution, and heightened heat-related health risks, 
disproportionately aXecting vulnerable populations (Hartinger et al., 2024). Projections indicate that by 
2050, fatalities linked to UHIs and associated heat waves could surpass those from infectious diseases 
globally (Hartinger et al., 2024). 

UHI is a well-documented phenomenon, but only since the beginning of 2000s has it gained a significant 
research interest, largely because of the widespread use of remote sensing data and GIS solutions and 
the sharp rise in Machine Learning and AI based approaches in UHI studies over the last decade (He et 
al., 2023). State-of-the-art studies apply AI models to process complex, heterogeneous datasets, 
including satellite imagery, urban morphology indicators, IoT sensor data and socio-economic variables, 
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which aXect urban climatic zones (Shatnawi et al., 2025; Snaiki and Merabtine, 2025). In UHI monitoring, 
AI solutions are used to create high resolution spatial and temporal maps of thermal conditions (Yi et al., 
2025). Deep Learning models, particularly Convolutional Neural Networks (CNNs) and U-Net 
architectures, are employed for the semantic segmentation of satellite imagery, providing products 
which can support UHI mitigation policies (Shaamala et al., 2025). Beyond that, latest AI models are 
transitioning from simple Land Surface Temperature (LST) estimation to UHI forecasting and predictive 
warning systems (Hoang and Nguyen, 2025). 

Despite undeniable recent advancements in UHI analysis, there are still significant challenges 
connected with available datasets, AI models application, solutions scalability and transferability 
(Marey et al., 2025). UHI research relies largely on remote sensing data and specialised in-situ 
measurements. Yet remote sensing satellites equipped with thermal imaging sensors are mostly limited 
to Landsat, MODIS and VIIRS missions, which do not provide suXicient temporal (Landsat) or spatial 
(MODIS, VIIRS) resolution. Ground-based sensor networks are costly to establish and maintain, and 
have limited spatial coverage (Snaiki and Merabtine, 2025). Conventional AI models often fall short in 
providing transparent explanations for why specific urban neighbourhoods face greater heat risks. The 
“black box” nature of many AI algorithms can hinder their adoption by urban planners who require clear, 
justifiable insights for decision-making (Mallick and Alqadhi, 2025; Shaamala et al., 2025). This inherent 
lack of transparency and the challenge of integrating nuanced, dynamic local variations limit the utility 
of many current AI-driven assessments in developing targeted and eXective urban adaptation strategies 
(Kumar and Bassill, 2024; Srivastava and Maity, 2023). 

To bridge this gap, this project outlines an innovative urban heat island case study focused on developing 
and applying S-xAI. The study aims to identify urban zones prone to higher temperatures by integrating 
data on climate exposure, land use patterns, infrastructure characteristics, and socio-economic 
vulnerabilities. A key objective is to explain how specific urban features such as building materials, 
vegetation density and type, and urban morphology aXect ventilation and influence local heat stress. 
This approach will yield interpretable and actionable adaptation strategies, such as optimised NBS 
initiatives and the strategic installation of water bodies and green area to mitigate identified risks. 
Guatemala City, the Hague, and Kraków have been selected as pilot cities for this research, leveraging 
diverse datasets including high-resolution canopy cover, Normalised DiXerence Vegetation Index (NDVI) 
as a proxy for Urban Temperature Regulation (UTR), and indicators of Urban Green Infrastructure Quality 
(Bokwa, 2023; van Eupen et al., 2024; Winograd et al., 2023). Other data inputs for UHI models typically 
include detailed urban structural data, land surface temperatures, vegetation indices, and 
meteorological parameters like air temperature, humidity, and wind speed (Kumar et al., 2016; Tehrani 
et al., 2024). 

The AI canvas for this use case is given in Table 7. Specifically, this project will pursue the following 
objectives: first, to develop S-xAI models that integrate satellite-derived land surface temperature data 
with comprehensive urban morphological and socio-economic datasets, thereby clearly identifying the 
primary drivers of localised heat risk. Second, to produce readily understandable visual and textual 
outputs tailored for city planners, policymakers, and community stakeholders, facilitating informed 
decision-making. Thirdly, to incorporate future climate change projections into the S-xAI models to 
enable robust, long-term adaptation planning.  

 



 

 

AETHER_RB_V1.docx  Page: 31/40 

 

Table 7: AI Canvas for the urban heat island use case 

Use case objective 
Map and forecast urban heat patterns at block scale 
and deliver self-explainable heat-risk indicators for 
planning and adaptation. Success: Accurate UHI 
intensity prediction across cities and seasons, with 
explanations that are physically consistent and 
actionable for planners. 

Data 
1) EO:  Landsat-8/9, Sentinel, Copernicus LST, 
DEM/slope. 
2) Ancillary: Municipal land-use/land-cover and 
forest/green area maps; population density and road 
network; building height, built-up age, and 3D block 
models; poverty and vulnerability indicators; heatwave 
frequency/intensity projections. 
3) Labelling rules: UHI labels from LST deviation 
relative to city mean and heat-stress comfort 
thresholds, grouped into 8–10 ordered LST/UHI stress 
classes (from cold pixels to very high stress)  
4) Corpus: Urban heat standards, urban form and 
vulnerability ontologies, EO documentation for LST and 
urban indicators, UHI modelling literature, validation 
guidance, concept cards, city context briefs. 

Modelling approach 
A shared EO encoder generates spatiotemporal 
embeddings per urban tile, while a tabular/graph 
encoder processes socio-economic and built-
environment features. A multimodal head predicts 
continuous LST and discrete UHI classes with temporal 
generalisation. Explainability is provided via feature 
attributions, concept-based probes (e.g., vegetation, 
imperviousness), and RAG-style narratives with 
provenance and uncertainty.  

Initial concepts 
Key layers include land cover, vegetation and canopy 
metrics, building and impervious surface 
characteristics, climate and heat indicators, and socio-
economic factors such as vulnerability and access to 
green space, integrated to support urban heat and 
greening analyses. 

Study regions 
Guatemala City: Metropolitan area with LST-based UHI 
gradients and socio-environmental vulnerability zones. 
Kraków: City-wide LST maps, hot- and cold-spots, 
detailed built-up and vegetation structure. 
Optional: Third Latin American or European city with 
comparable EO and municipal datasets. 

Outputs 
 High-resolution LST and UHI class maps; hot-
spot/cold-spot layers; block heat-risk indicators; 
priority greening and cooling intervention maps; 
dashboards for inequality and vulnerability overlays; 
explanation products: ranked drivers (e.g. vegetation, 
imperviousness, height), concept similarity maps, 
attribution maps, text rationales with provenance and 
uncertainty. 

Current xAI SOTA 
Integrated tabular EO features; concept 
activation/TCAV for vegetation and imperviousness 
concepts; counterfactual what-if analysis on greening 
and densification; prototype/critic tiles for typical hot 
and cool patterns. 

Current xAI benchmarks 
Faithfulness via deletion/insertion AUC (AUC approx. 
0.90), localisation accuracy using mask overlap where 
available (mIoU approx. 0.5), stability under 
perturbations and domain shift, counterfactual validity 
via plausibility and minimality checks, concept quality 
for TCAV through consistent positive concept scores 
across space and time, human alignment typically 
assessed through expert usefulness studies.  

Value proposition 
Scalable, explainable UHI intelligence that links 
physical drivers, social vulnerability, and planning 
levers, enabling targeted cooling investments, resilient 
urban design, and climate-health policy with high 
public trust. 

Stakeholders 
 Local citizens and community organisations in 
vulnerable neighbourhoods; city planners and 
municipal authorities; climate NGOs and international 
development partners; and urban researchers. 
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4. End Users and Impact 
The project addresses the urgent need for scalable, self-explainable AI methods to support 
biodiversity monitoring, crop yield prediction, and urban heat island assessment, supporting 
global commitments under the Kunming-Montreal Global Biodiversity Framework and the UN 
Sustainable Development Goals (SDGs 2, 11, 13, and 15). The primary end-users include 
environmental and agricultural agencies, urban planners, research institutions, and policy 
makers who require explainable, data-driven insights for conservation, food security, and climate 
adaptation. By integrating Earth Observation data, deep learning, and self-explainable AI, 
AETHER aims to deliver interpretable and decision-ready outputs that strengthen trust and 
uptake across sectors. All datasets, models, and analytical workflows will be developed in line 
with FAIR (Findable, Accessible, Interoperable, and Reusable) principles (Wilkinson et al., 2016) 
to ensure long-term accessibility and reproducibility. Moreover, natural language-based 
interfaces will enable both expert and non-technical users to interact intuitively with model 
results, promoting transparency and inclusion. Ultimately, the project will enhance evidence-
based policy and planning, support capacity development, and enable open data reuse across 
biodiversity, agriculture, and urban sustainability domains, delivering lasting societal and 
environmental impact beyond the project’s duration.  

4.1. Use case 1: Biodiversity 

This component enhances the explainability of AI models for biodiversity assessment and 
conservation. End-users include ecology researchers and practitioners from networks such as 
LTER-LIFE1, the Netherlands Institute of Ecology (NIOO)2, and the UK Centre for Ecology & 
Hydrology (UKCEH)3. Engagement will be conducted through established research partnerships 
and collaborative activities. Two user groups will be directly involved in the testing of the 
developed AI system: ecologists from UKCEH representing the scientific community, and a data 
analyst from the Peak District National Park representing conservation practitioners. The 
explainable outputs will help these users better interpret ecosystem trends, inform conservation 
priorities, and improve communication with policy and public audiences. 

4.2. Use case 2: Crop Yield  

The agricultural component focuses on developing self-explainable AI models for crop yield 
prediction in West Africa, supporting food and income security and climate resilience. 
Engagement will target governmental agencies, agricultural researchers, NGOs, farmer 
organisations, and private-sector partners, ensuring open access to yield predictions. Confirmed 
user groups include university scholars in Burkina Faso representing the scientific community 
and project managers from a cocoa company in West Africa. Additionally, individual smallholder 
farmers in Burkina Faso will be asked to join the end user testing. These users will validate and 

 
1 https://lter-life.nl/en  
2 https://nioo.knaw.nl/en  
3 https://www.ceh.ac.uk/  
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apply the models to enhance agricultural planning, optimise resource allocation, and guide 
sustainable intensification in both staple and cash crop systems. 

4.3. Use case 3: Urban Heat Islands 

The urban component develops explainable AI models to map and mitigate urban heat island 
e`ects, delivering actionable information to planners and local decision-makers. In Guatemala 
City, end users involved in this project will include municipality employees (two confirmed senior 
sta` members from planning city o`ice) and NGOs active in NBS implementation, urban 
sustainability and social resilience (two confirmed senior sta` members of CALMECAC1). In 
Krakow, we have confirmed the collaboration of one senior sta` member from the Department of 
Environment, Climate, and Air (WS), and the collaboration will build on earlier UHI mapping and 
the city’s participation in the EU “100 Climate-Neutral and Smart Cities by 2030” Mission. 
Furthermore, a representative of the Sendzmir Foundation2 promoting sustainable development 
will be involved in the end-user testing and provide feedback from the level of NGOs. Finally, two 
private residents of central Krakow will provide citizen-level feedback. The resulting tools and 
indicators, such as canopy cover and NDVI, will support equitable urban planning, informed 
policymaking, and improved community adaptation to heat-related risks. 

  

 
1 https://www.fundacioncalmecac.org/  
2 https://sendzimir.org.pl/en/  
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5. Summary & Conclusion 
The AETHER project will develop a self-explainable AI (S-xAI) framework that integrates deep 
learning, concept-based reasoning, and retrieval-augmented generation to produce transparent, 
scientifically grounded, predictions from Earth Observation data. By aligning EO embeddings 
with human-interpretable concepts and generating text-based explanations, the system will 
bridge the gap between powerful AI models and stakeholder needs for trust, traceability, and 
actionable insight. The architecture is modular, scalable, and applicable across three high-
impact use cases—biodiversity monitoring, crop yield prediction, and urban heat island 
assessment—each supported by rich public datasets and extensive end-user engagement. 
Overall, AETHER will demonstrate how self-explainable AI can improve environmental monitoring 
and decision-making by o`ering interpretable outputs, adhering to FAIR data principles, and an 
inclusive design that empowers scientists, planners, and communities to better understand and 
respond to climate-related challenges. 
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